Molecular mechanisms of memory reconsolidation (original) (raw)

References

  1. McGaugh, J. L. Memory — a century of consolidation. Science 287, 248–251 (2000).
    CAS PubMed Google Scholar
  2. Misanin, J. R., Miller, R. R. & Lewis, D. J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 554–555 (1968). The first demonstration of a post-retrieval memory disruption; this set the basis for the thinking about reconsolidation that continues today.
    CAS PubMed Google Scholar
  3. Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).
    CAS PubMed Google Scholar
  4. Dudai, Y. Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178 (2006). An important reassessment of what reconsolidation might mean and how it should be examined.
    CAS PubMed Google Scholar
  5. Nader, K., Schafe, G. E. & LeDoux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000). Landmark study that re-introduced reconsolidation into the mainstream dialogue on memory. The authors demonstrated that intra-amygdala inhibition of protein synthesis after retrieval of a previously consolidated memory resulted in amnesia for the retrieved memory, but not for consolidated memories that were not retrieved.
    CAS PubMed Google Scholar
  6. Tronson, N. C., Wiseman, S. L., Olausson, P. & Taylor, J. R. Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nature Neurosci. 9, 167–169 (2006).
    CAS PubMed Google Scholar
  7. Gordon, W. C. in Information Processing in Animals: Memory Mechanisms (eds Spear, N. E. & Miller, R. R.) 319–343 (Erlbaum, Hillsdale, New Jersey,1981).
    Google Scholar
  8. Segal, M. Dendritic spines and long-term plasticity. Nature Rev. Neurosci. 6, 277–284 (2005).
    CAS Google Scholar
  9. Pedreira, M. E., Perez-Cuesta, L. M. & Maldonado, H. Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J. Neurosci. 22, 8305–8311 (2002).
    CAS PubMed PubMed Central Google Scholar
  10. Anokhin, K. V., Tiunova, A. A. & Rose, S. P. Reminder effects — reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 15, 1759–1765 (2002).
    PubMed Google Scholar
  11. Dacher, M., Lagarrigue, A. & Gauthier, M. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130, 37–50 (2005).
    CAS PubMed Google Scholar
  12. Eisenberg, M., Kobilo, T., Berman, D. E. & Dudai, Y. Stability of retrieved memory: inverse correlation with trace dominance. Science 301, 1102–1104 (2003).
    CAS PubMed Google Scholar
  13. Sangha, S., Scheibenstock, A. & Lukowiak, K. Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J. Neurosci. 23, 8034–8040 (2003).
    CAS PubMed PubMed Central Google Scholar
  14. Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003). This important study demonstrates reconsolidation of memory in human individuals using a novel motor sequence learning task.
    CAS PubMed Google Scholar
  15. Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nature Neurosci. 5, 348–355 (2001).
    Google Scholar
  16. Cammarota, M., Bevilaqua, L. R., Medina, J. H. & Izquierdo, I. Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn. Mem. 11, 572–578 (2004).
    PubMed PubMed Central Google Scholar
  17. Thompson, C. I. & Grossman, L. B. Loss and recovery of long-term memories after ECS in rats: evidence for state-dependent recall. J. Comp. Physiol. Psychol. 78, 248–254 (1972).
    CAS PubMed Google Scholar
  18. Mactutus, C. F., Riccio, D. C. & Ferek, J. M. Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204, 1319–1320 (1979).
    CAS PubMed Google Scholar
  19. Riccio, D. C. & Richardson, R. The status of experimentally induced amnesias: gone, but not forgotten. Physiol. Psychol. 12, 59–72 (1984).
    Google Scholar
  20. Lattal, K. M. & Abel T. Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. Proc. Natl Acad. Sci. USA 101, 4667–4672 (2004).
    CAS PubMed PubMed Central Google Scholar
  21. Prado-Alcala, R. A. et al. Amygdala or hippocampus inactivation after retrieval induces temporary memory deficit. Neurobiol. Learn. Mem. 86, 144–149 (2006).
    PubMed Google Scholar
  22. Suzuki, A. et al. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787–4795 (2004). This important study began to disambiguate molecular mechanisms of reconsolidation from those of extinction.
    CAS PubMed PubMed Central Google Scholar
  23. Morris, R. G. et al. Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479–489 (2006). An elegant study showing specific conditions under which reconsolidation of spatial memories does and does not occur, and an important contribution to the theoretical debate on reconsolidation.
    CAS PubMed Google Scholar
  24. Pedreira, M. E. & Maldonado, H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38, 863–869 (2003). The first study to demonstrate that reconsolidation can be dissociated from extinction using reactivation session length.
    CAS PubMed Google Scholar
  25. Rossato, J. I., Bevilaqua, L. R., Medina, J. H., Izquierdo, I. & Cammarota, M. Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learn. Mem. 13, 431–440 (2006).
    CAS PubMed PubMed Central Google Scholar
  26. Judge, M. E. & Quartermain, D. Characteristics of retrograde amnesia following reactivation of memory in mice. Physiol. Behav. 28, 585–590 (1982).
    CAS PubMed Google Scholar
  27. Riccio D. C., Hodges L. A. & Randall P. K. Retrograde amnesia produced by hypothermia in rats. J. Comp. Physiol. Psychol. 66, 618–622 (1968).
    CAS PubMed Google Scholar
  28. Dudai, Y. & Eisenberg, M. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100 (2004).
    CAS PubMed Google Scholar
  29. Duvarci, S, Mamou, C. B. & Nader, K. Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. Eur. J. Neurosci. 24, 249–260 (2006).
    PubMed Google Scholar
  30. Taubenfeld, S. M., Milekic, M. H., Monti, B. & Alberini, C. M. The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nature Neurosci. 4, 813–818 (2001).
    CAS PubMed Google Scholar
  31. Power, A. E., Berlau, D. J., McGaugh, J. L. & Steward, O. Anisomycin infused into the hippocampus fails to block 'reconsolidation' but impairs extinction: the role of re-exposure duration. Learn. Mem. 13, 27–34 (2006).
    CAS PubMed PubMed Central Google Scholar
  32. Hernandez, P. J., Sadeghian, K. & Kelley, A. E. Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nature Neurosci. 5, 1327–1331 (2002).
    CAS PubMed Google Scholar
  33. Hernandez, P. J. & Kelley, A. E. Long-term memory for instrumental responses does not undergo protein synthesis-dependent reconsolidation upon retrieval. Learn. Mem. 11, 748–754 (2004).
    PubMed PubMed Central Google Scholar
  34. Tronel, S., Milekic, M. H. & Alberini, C. M. Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol. 3, e293 (2005).
    PubMed PubMed Central Google Scholar
  35. Milekic, M. H., Brown, S. D., Castellini, C. & Alberini, C. M., Persistent disruption of an established morphine conditioned place preference. J. Neurosci. 26, 3010–3020 (2006).
    CAS PubMed PubMed Central Google Scholar
  36. Routtenberg, A. & Rekart, J. L. Post-translational protein modification as the substrate for long-lasting memory. Trends Neurosci. 28, 12–19 (2005).
    CAS PubMed Google Scholar
  37. Hall, J., Thomas, K. L. & Everitt, B. J. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur. J. Neurosci. 13, 1453–1458 (2001).
    CAS PubMed Google Scholar
  38. Miller, C. A. & Marshall, J. F. Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47, 873–884 (2005).
    CAS PubMed Google Scholar
  39. Merlo, E., Freudenthal, R., Maldonado, H. & Romano, A. Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn. Mem. 12, 23–29 (2005).
    PubMed PubMed Central Google Scholar
  40. Lin, C. H., Yeh, S. H., Lu, H. Y. & Gean, P. W., The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J. Neurosci. 23, 8310–8317 (2003).
    CAS PubMed PubMed Central Google Scholar
  41. Lee, J. L., Everitt, B. J. & Thomas, K. L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004). This landmark study demonstrated a double dissociation between mechanisms of consolidation (BDNF) and reconsolidation (ZIF268) within the hippocampus.
    CAS PubMed Google Scholar
  42. Bozon, B., Davis, S. & Laroche, S. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695–701 (2003).
    CAS PubMed Google Scholar
  43. Lee, J. L., Di Ciano, P., Thomas, K. L. & Everitt, B. J. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47, 795–801 (2005). Novel demonstration of reconsolidation of an appetitive, Pavlovian, drug-associated memory.
    CAS PubMed Google Scholar
  44. Lee, J. L., Milton, A. L. & Everitt, B. J. Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J. Neurosci. 26, 5881–5887 (2006).
    CAS PubMed PubMed Central Google Scholar
  45. Hellemans, K. G., Everitt, B. J. & Lee, J. L. Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J. Neurosci. 26, 12694–12699 (2006).
    CAS PubMed PubMed Central Google Scholar
  46. Duvarci, S., Nader, K. & LeDoux, J. E. Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur. J. Neurosci. 21, 283–289 (2005).
    PubMed Google Scholar
  47. Kelly, A., Laroche, S. & Davis, S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J. Neurosci. 23, 5354–5360 (2003).
    CAS PubMed PubMed Central Google Scholar
  48. Valjent, E., Corbille, A. G., Bertran-Gonzalez, J., Herve, D. & Girault, J. A. Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc. Natl Acad. Sci. USA 103, 2932–2937 (2006).
    CAS PubMed PubMed Central Google Scholar
  49. Koh, M. T. & Bernstein, I. L. Inhibition of protein kinase A activity during conditioned taste aversion retrieval: interference with extinction or reconsolidation of a memory? Neuroreport 14, 405–407 (2003).
    CAS PubMed Google Scholar
  50. Kemenes, G., Kemenes, I., Michel, M., Papp, A. & Muller, U. Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J. Neurosci. 26, 6298–6302 (2006).
    CAS PubMed PubMed Central Google Scholar
  51. Hall, J., Thomas, K. L. & Everitt, B. J. Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J. Neurosci. 21, 2186–2193 (2001).
    CAS PubMed PubMed Central Google Scholar
  52. Thomas, K. L., Hall, J. & Everitt, B. J. Cellular imaging with zif268 expression in the rat nucleus accumbens and frontal cortex further dissociates the neural pathways activated following the retrieval of contextual and cued fear memory. Eur. J. Neurosci. 16, 1789–1796 (2002).
    PubMed Google Scholar
  53. Strekalova, T. et al. Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus. Genes Brain Behav. 2, 3–10 (2003).
    CAS PubMed Google Scholar
  54. Tronel, S. & Sara S. J. Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn. Mem. 9, 105–111 (2002).
    PubMed PubMed Central Google Scholar
  55. von Hertzen, L. S. & Giese, K. P. Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J. Neurosci. 25, 1935–1942 (2005).
    CAS PubMed PubMed Central Google Scholar
  56. Rohrbaugh, M. & Riccio, D. C. Paradoxical enhancement of learned fear. J. Abnorm. Psychol. 75, 210–216 (1970).
    CAS PubMed Google Scholar
  57. Gordon, W. C. & Spear N. E., The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol. Behav. 10, 1071–1075 (1973).
    CAS PubMed Google Scholar
  58. Frenkel, L., Maldonado, H. & Delorenz, A. Memory strengthening by a real-life episode during reconsolidation: an outcome of water deprivation via brain angiotensin II. Eur. J. Neurosci. 22, 1757–1766 (2005).
    PubMed Google Scholar
  59. Blaiss, C. A. & Janak, P. H. Post-training and post-reactivation administration of amphetamine enhances morphine conditioned place preference. Behav. Brain. Res. 171, 329–337 (2006).
    CAS PubMed PubMed Central Google Scholar
  60. Lee, J. L. C., Milton, A. L. & Everitt, B. J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci. 26, 10051–10056 (2006).
    CAS PubMed PubMed Central Google Scholar
  61. Rodriguez-Ortiz, C. J., De la Cruz, V., Gutierrez, R. & Bermidez-Rattoni, F. Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained. Learn. Mem. 12, 533–537 (2005).
    PubMed PubMed Central Google Scholar
  62. Hupbach, A., Gomez, R., Hardt, O. & Nadel, L. Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn. Mem. 14, 47–53 (2007). This important article demonstrates retrieval-initiated updating of memory in a traditional human memory task.
    PubMed PubMed Central Google Scholar
  63. Debiec, J., Doyere, V., Nader, K. & Le Doux, J. E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc. Natl Acad. Sci. USA 103, 3428–3433 (2006). An important demonstration of the specificity of reconsolidation of fear memories.
    CAS PubMed PubMed Central Google Scholar
  64. Duvarci, S. & Nader, K. Characterization of fear memory reconsolidation. J. Neurosci. 24, 9269–9275 (2004).
    CAS PubMed PubMed Central Google Scholar
  65. Fonseca, R., Nagerl, U. V. & Bonhoeffer, T. Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neurosci. 9, 478–480 (2006). This seminal study is the first study to suggest a reconsolidation-like process in slice electrophysiology. Development of this model will contribute to the progress of research into mechanisms of memory reconsolidation.
    CAS PubMed Google Scholar
  66. Squire, L. R., Slater, P. C. & Chace, P. M. Reactivation of recent or remote memory before electroconvulsive therapy does not produce retrograde amnesia. Behav. Biol. 18, 335–343 (1976).
    CAS PubMed Google Scholar
  67. McCleery, J. M. & Harvey, A. G. Integration of psychological and biological approaches to trauma memory: implications for pharmacological prevention of PTSD. J. Trauma. Stress 17, 485–496 (2004).
    PubMed Google Scholar
  68. Centonze, D., Siracusana, A., Calabresi, P. & Bernardi, G. Removing pathogenic memories: a neurobiology of psychotherapy. Mol. Neurobiol. 32, 123–132 (2005).
    CAS PubMed Google Scholar
  69. Pitman, R. K. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol. Psychiatry 51, 189–192 (2002).
    CAS PubMed Google Scholar
  70. Miller, M. M., Altemus, M., Debiec, J., LeDoux, J. E. & Phelps, E. A. Propranolol impairs reconsolidation of conditioned fear in humans. Soc. Neurosci. Abstr. 208.2 (2004).
  71. Debiec, J. & LeDoux, J. E. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129, 267–272 (2004).
    CAS PubMed Google Scholar
  72. Bustos, S. G., Maldonado, H. & Molina, V. A. Midazolam disrupts fear memory reconsolidation. Neuroscience 139, 831–842 (2006).
    CAS PubMed Google Scholar
  73. Walker, D. L., Ressler, K. J., Lu, K. T. & Davis, M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 22, 2343–2351 (2002).
    CAS PubMed PubMed Central Google Scholar
  74. Quartermain, D., Mower, J., Rafferty, M. F., Hertng, R. L. & Lanthorn, T. H. Acute but not chronic activation of the NMDA-coupled glycine receptor with D-cycloserine facilitates learning and retention. Eur. J. Pharmacol. 257, 7–12 (1994).
    CAS PubMed Google Scholar
  75. McClung, C. A. & Nestler, E. J. Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neurosci. 6, 1208–1215 (2003).
    CAS PubMed Google Scholar
  76. Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci. 2, 119–128 (2001).
    CAS Google Scholar
  77. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M. & Nestler, E. J. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110 (1991).
    CAS PubMed Google Scholar
  78. Rose, J. K. & Rankin, C. H. Blocking memory reconsolidation reverses memory-associated changes in glutamate receptor expression. J. Neurosci. 26, 1582–1587 (2006). Important study showing that glutamate receptor removal from synapses coincides with behavioural measures of memory disruption after retrieval. The use of this novel dependent variable provides strong evidence for cellular changes that correlate with a reversal of learning-related changes, and therefore a role for reconsolidation in the maintenance of stored memories.
    Google Scholar
  79. Eisenberg, M. & Dudai, Y. Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don't die. Eur. J. Neurosci. 20, 3397–3403 (2004).
    PubMed Google Scholar
  80. Milekic, M. H. & Alberini, C. M. Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521–525 (2002).
    CAS PubMed Google Scholar
  81. Frankland, P. W. et al. Stability of recent and remote contextual fear memory. Learn. Mem. 13, 451–457 (2006).
    PubMed PubMed Central Google Scholar
  82. Pedreira, M. E., Perez-Cuesta, L. M. & Maldonado, H. Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn. Mem. 11, 579–585 (2004).
    PubMed PubMed Central Google Scholar
  83. Biedenkapp, J. C. & Rudy, J. W. Context memories and reactivation: constraints on the reconsolidation hypothesis. Behav. Neurosci. 118, 956–964 (2004).
    PubMed Google Scholar
  84. Wang, S., Marin, M. & Nader, K. Memory strength as a transient boundary condition on reconsolidation of auditory fear memories and its molecular correlates. Soc. Neurosci. Abstr. 650.2 (2005).
  85. Mamiya, N., Suzuki, A. & Kida, S. Analyses of brain regions showing CREB activation in reconsolidation and extinction phases of contextual fear memory. Soc. Neurosci. Abstr. 208.2 (2006).
  86. Bouton, M. E. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol. Bull. 114, 80–99 (1993).
    CAS PubMed Google Scholar
  87. Przybyslawski, J. Roullet, P. & Sara, S. J. Attenuation of emotional and nonemotional memories after their reactivation: role of β adrenergic receptors. J. Neurosci. 19, 6623–6628 (1999).
    CAS PubMed PubMed Central Google Scholar
  88. Roullet, P. & Sara, S. Consolidation of memory after its reactivation: involvement of β noradrenergic receptors in the late phase. Neural Plast. 6, 63–68 (1998).
    CAS PubMed PubMed Central Google Scholar
  89. Bernadi, R. E., Lattal, K. M. & Berger, S. P. Postretrieval propranolol disrupts a cocaine conditioned place preference. Neuroreport 17, 1443–1447 (2006).
    Google Scholar
  90. Diergaarde, L., Schoffelmeer, A. N. & De Vries, T. J. β-adrenoceptor mediated inhibition of long-term reward-related memory reconsolidation. Behav. Brain. Res. 170, 333–336 (2006).
    CAS PubMed Google Scholar
  91. Przybyslawski, J., Roullet, P. & Sara, S. J. Reconsolidation of memory after its reactivation. Behav. Brain. Res. 84, 241–246 (1997).
    CAS PubMed Google Scholar
  92. Mamou, C. B., Gamache, K. & Nader, K. NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat. Neurosci. 9, 1237–1239 (2006).
    PubMed Google Scholar
  93. Torras-Garcia, M., Lelong, J., Tronel, S. & Sara, S. Reconsolidation after remembering an odor-reward association requires NMDA receptors. Learn. Mem. 12, 18–22 (2005).
    PubMed PubMed Central Google Scholar
  94. Cestari, V., Costanzi, M., Castellano, C. & Rossi-Arnaud, C. A role for ERK2 in reconsolidation of fear memories in mice. Neurobiol. Learn. Mem. 86, 133–143 (2006).
    CAS PubMed Google Scholar
  95. Parsons, R. G., Gafford, G. M., Baruch, D. E., Riedner, B. A. & Helmstetter, F. J. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. Eur. J. Neurosci. 23, 1853–1859 (2006).
    PubMed PubMed Central Google Scholar
  96. Debiec, J., LeDoux, J. E. & Nader, K. Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538 (2002).
    CAS PubMed Google Scholar
  97. Gainutdinova, T. H. et al. Reconsolidation of a context long-term memory in the terrestrial snail requires protein synthesis. Learn. Mem. 12, 620–625 (2005).
    PubMed PubMed Central Google Scholar
  98. Runyan, J. D. & Dash, P. K. Inhibition of hippocampal protein synthesis following recall disrupts expression of episodic-like memory in trace conditioning. Hippocampus 15, 333–339 (2005).
    PubMed Google Scholar
  99. Blum, S., Runyan, J. D. & Dash, P. K. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning. BMC Neurosci. 7, 67 (2006).
    PubMed PubMed Central Google Scholar
  100. Litvin, O. O. & Anokhin, K. V., Mechanisms of memory reorganization during retrieval of acquired behavioral experience in chicks: the effects of protein synthesis inhibition in the brain. Neurosci. Behav. Physiol. 30, 671–678 (2000).
    CAS PubMed Google Scholar
  101. Bahar, A., Dorfman, N. & Dudai, Y. Amygdalar circuits required for either consolidation or extinction of taste aversion memory are not required for reconsolidation. Eur. J. Neurosci. 19, 1115–1118 (2004).
    PubMed Google Scholar
  102. Gruest, N., Richer, P. & Hars, B. Memory consolidation and reconsolidation in the rat pup require protein synthesis. J. Neurosci. 24, 10488–10492 (2004).
    CAS PubMed PubMed Central Google Scholar
  103. Wang, S. H., Ostlund, S. B., Nader, K. & Balleine, B. W. Consolidation and reconsolidation of incentive learning in the amygdala. J. Neurosci. 25, 830–835 (2005).
    PubMed PubMed Central Google Scholar
  104. Lattal, K. M., Honarvar, S. & Abel, T. Effects of post-session injections of anisomycin on the extinction of a spatial preference and on the acquisition of a spatial reversal preference. Behav. Brain. Res. 153, 327–339 (2004).
    CAS PubMed Google Scholar
  105. Akirav, I. & Maroun, M. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cereb. Cortex 16, 1739–1769 (2006).
    Google Scholar
  106. Rossato, J. I et al. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36–46 (2007).
    PubMed PubMed Central Google Scholar
  107. Inda, M. C., Delgado-Garcia, J. M. & Carrion, A. M. Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J. Neurosci. 25, 2070–2080 (2005).
    CAS PubMed PubMed Central Google Scholar
  108. Yim, A. J., Moraes, C. R., Ferriera, T. L. & Oliveira, M. G. Protein synthesis inhibition in the basolateral amygdala following retrieval does not impair expression of morphine-associated conditioned place preference. Behav. Brain. Res. 171, 162–169 (2006).
    CAS PubMed Google Scholar
  109. Sangha, S., Scheibenstock, A. & Lukowiak, K. Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J. Neurosci. 3, 8034–8040 (2003).
    Google Scholar
  110. Child, F. M., Epstein, H. T., Kuzirian, A. M. & Alkon, D. L. Memory reconsolidation in Hermissenda. Biol. Bull. 205, 218–219 (2003).
    CAS PubMed Google Scholar
  111. Kraus, M. et al. Memory consolidation for the discrimination of frequency-modulated tones in mongolian gerbils is sensitive to protein-synthesis inhibitors applied to the auditory cortex. Learn. Mem. 9, 293–303 (2002).
    PubMed PubMed Central Google Scholar
  112. Salinska, E. The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks. Neurochem. Int. 48, 447–452 (2006).
    CAS PubMed Google Scholar
  113. Sherry, J. M., Hale, M. W. & Crowe, S. F. The effects of the dopamine D1 receptor antagonist SCH23390 on memory reconsolidation following reminder-activated retrieval in day-old chicks. Neurobiol. Learn. Mem. 83, 104–112 (2005).
    CAS PubMed Google Scholar
  114. Bucherelli, C., Baldi, E., Mariottini, C., Passani, M. B. & Blandina, P. Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learn. Mem. 13, 426–430 (2006).
    CAS PubMed Google Scholar
  115. Boccia, M. M., Acosta, G. B., Blake, M. G. & Baratti, C. M. Memory consolidation and reconsolidation of an inhibitory avoidance response in mice: effects of i.c.v. injections of hemicholinium-3. Neuroscience 124, 735–741 (2004).
    CAS PubMed Google Scholar
  116. Doyere, V., Debiec, J., Monfils, M.-H., Schafe, G. E. & LeDoux, J. E. Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nature Neurosci. (in the press).

Download references