Recognition memory and the medial temporal lobe: a new perspective (original) (raw)

References

  1. Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 (1980).
    Article Google Scholar
  2. Atkinson, R. C. & Juola, J. F., in Contemporary Developments in Mathematical Psychology (eds Krantz, D. H., Atkinson, R. C. & Suppes, P.) 243–290 (Freeman, San Francisco, 1974).
    Google Scholar
  3. Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nature Rev. Neurosci. 2, 51–61 (2001).
    Article CAS Google Scholar
  4. Aggleton, A. P. & Brown, M. W. Interleaving brain systems for episodic and recognition memory. Trends Cogn. Sci. 10, 455–463 (2006).
    Article PubMed Google Scholar
  5. Eichenbaum, H., Yonelinas, A. R. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).
    Article CAS PubMed Central PubMed Google Scholar
  6. Rugg, M. D & Yonelinas, A. P. Human recognition memory: a cognitive neuroscience perspective. Trends Cogn. Sci. 7, 313–319 (2003).
    Article PubMed Google Scholar
  7. Squire, L. R., Stark, C. E. L. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).
    Article CAS PubMed Google Scholar
  8. Wixted, J. T. Dual-process theory and signal-detection theory of recognition memory. Psychol. Rev. 114, 152–176 (2007).
    Article PubMed Google Scholar
  9. Burwell, R. D., Suzuki, W. A., Insausti, R. & Amaral, D. G. in Perception, Memory, and Emotion: Frontiers in Neuroscience. (Eds Ono, T., McNaughton, B. L., Molotchnikoff, S., Rolls, E. T. & Nishijo, H.) 95–110 (Elsevier, New York, 1996).
    Google Scholar
  10. Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory? J. Cogn. Neurosci. 13, 357–369 (2001).
    Article CAS PubMed Google Scholar
  11. Bastin, C. et al. Dissociation between recall and recognition memory performance in an amnesic patient with hippocampal damage following carbon monoxide poisoning. Neurocase 10, 330–344 (2004).
    Article PubMed Google Scholar
  12. Holdstock, J. S. et al. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus 12, 341–351 (2002).
    Article CAS PubMed Google Scholar
  13. Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M. & Roberts, N. Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus 12, 325–340 (2002).
    Article CAS PubMed Google Scholar
  14. Yonelinas, A. P. et al. Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neurosci. 5, 1236–1241 (2002).
    Article CAS PubMed Google Scholar
  15. Wixted, J. T. & Squire, L. R. Recall and recognition are equally impaired in patients with selective hippocampal damage. Cogn. Affect. Behav. Neurosci. 4, 58–66 (2004).
    Article PubMed Google Scholar
  16. Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G. & Squire, L. R. Recognition memory and the human hippocampus. Neuron 37, 171–180 (2003).
    Article CAS PubMed Google Scholar
  17. Kopelman, M. D. et al. Recall and recognition memory in amnesia: patients with hippocampal, medial temporal, temporal lobe or frontal pathology. Neuropsychologia 45, 1232–1246 (2007).
    Article PubMed Google Scholar
  18. Eichenbaum, H., Otto, T. & Cohen, N. J. Two functional components of the hippocampal memory system. Behav. Brain Sci. 17, 449–472 (1994).
    Article Google Scholar
  19. Cohen, N. J. et al. Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies. Hippocampus 9, 83–98 (1999).
    Article CAS PubMed Google Scholar
  20. Giovanello, K. S., Schnye, D. M. & Verfaellie, M. A critical role for the anterior hippocampus in relational memory: evidence from a fMRI study comparing associative and item recognition. Hippocampus 14, 5–8 (2004).
    Article PubMed Google Scholar
  21. Yonelinas, A. P. & Parks, C. M. Receiver operating characteristics (ROCs) in recognition memory: a review. Psychol. Bull. 133, 800–832 (2007).
    Article PubMed Google Scholar
  22. Gold, J. J. et al. Item memory, source memory, and the medial temporal lobe: concordant findings from fMRI and memory-impaired patients. Proc. Natl Acad. Sci. USA 103, 9351–9356 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  23. Stark, C. E., Bayley, P. J. & Squire, L. R. Recognition memory for single items and for associations is similarly impaired following damage limited to the hippocampal region. Learn. Mem. 9, 238–242 (2002).
    Article PubMed Central PubMed Google Scholar
  24. Kan, I. P., Giovanello, K. S., Schnyer, D. M., Makris, N. & Verfaellie, M. Role of the medial temporal lobes in relational memory: neuropsychological evidence from a cued recognition paradigm. Neuropsychologia 45, 2589–2597 (2007).
    Article PubMed Central PubMed Google Scholar
  25. Gold, J. J., Hopkins, R. O. & Squire, L. R. Single-item memory, associative memory, and the human hippocampus. Learn. Mem. 13, 644–649 (2006).
    Article PubMed Central PubMed Google Scholar
  26. Zola-Morgan, S., Squire, L. R. & Ramus, S. Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 4, 483–495 (1994).
    Article CAS PubMed Google Scholar
  27. Mumby, D. G. Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav. Brain Res. 127, 159–181 (2001).
    Article CAS PubMed Google Scholar
  28. Egan, J. P. Recognition memory and the operating characteristic. (Tech. Note AFCRC-TN-58–51). Bloomington: Indiana Univ., Hearing and Communication Laboratory (1958).
    Google Scholar
  29. Rotello, C. M., Macmillan, N. A. & Reeder, J. A. Sum-difference theory of remembering and knowing: a two-dimensional signal detection model. Psychol. Rev. 111, 588–616 (2004).
    Article PubMed Google Scholar
  30. Yonelinas, A. P. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J. Exp. Psychol. Learn. Mem. Cogn. 20, 1341–1354 (1994).
    Article CAS PubMed Google Scholar
  31. Aggleton, J. P., et al. Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia 43, 1810–1823 (2005).
    Article PubMed Google Scholar
  32. Fortin, N. J., Wright, S. P. & Eichenbaum, H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431, 188–191 (2004).
    Article CAS PubMed Central PubMed Google Scholar
  33. Yonelinas, A. P., Kroll, N. E., Dobbins, I., Lazzara, M. & Knight, R. T. Recollection and familiarity deficits in amnesia: convergence of remember–know, process dissociation, and receiver operating characteristic data. Neuropsychology 12, 323–339 (1998).
    Article CAS PubMed Google Scholar
  34. Heathcote, A. Item recognition memory and the ROC. J. Exp. Psychol. Learn. Mem. Cogn. 29, 1210–1230 (2003).
    Article PubMed Google Scholar
  35. Rotello, C. M., Macmillan, N. A., Reeder, J. A. & Wong, M. The remember response: subject to bias, graded, and not a process-pure indicator of recollection. Psychon. Bull. Rev. 12, 865–873 (2005). This paper provides a demonstration that 'remember' responses are based on a continuous memory-strength signal, not a threshold recollection signal. The reported experiments also show why, in the past, some results have seemed to suggest otherwise.
    Article PubMed Google Scholar
  36. Slotnick, S. D. & Dodson, C. S. Support for a continuous (single-process) model of recognition memory and source memory. Mem. Cogn. 33, 151–170 (2005).
    Article Google Scholar
  37. Smith, D. G. & Duncan, M. J. Testing theories of recognition memory by predicting performance across paradigms. J. Exp. Psychol. Learn. Mem. Cogn. 30, 615–625 (2004).
    Article PubMed Google Scholar
  38. Glanzer, M., Kim, K., Hilford, A. & Adams, J. K. Slope of the receiver-operating characteristic in recognition memory. J. Exp. Psychol. Learn. Mem. Cogn. 25, 500–513 (1999).
    Article Google Scholar
  39. Koriat, A., Levy-Sadot, R., Edry, E. & de Marcas, G. What do we know about what we cannot remember? Accessing the semantic attributes of words that cannot be recalled. J. Exp. Psychol. Learn. Mem. Cogn. 29, 1095–1105 (2003).
    Article PubMed Google Scholar
  40. Slotnick, S. D., Klein, S. A., Dodson, C. S. & Shimamura, A. P. An analysis of signal detection and threshold models of source memory. J. Exp. Psychol. Learn. Mem. Cogn. 26, 1499–1517 (2000).
    Article CAS PubMed Google Scholar
  41. Wais, P. E., Wixted, J. T., Hopkins, R. O. & Squire, L. R. The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron 49, 459–466 (2006). This study shows that the component processes (recollection and familiarity) that determine the shape of the ROC are both operative in memory-impaired patients with hippocampal lesions.
    Article CAS PubMed Central PubMed Google Scholar
  42. Rempel-Clower, N. L., Zola, S. M., Squire, L. R. & Amara, D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  43. Holdstock, J. S., Mayes, A. R., Gong, Q., Roberts, N. & Kapur, N. Item recognition is less impaired than recall and associative recognition in a patient with selective hippocampal damage. Hippocampus 15, 203–215 (2005).
    Article CAS PubMed Google Scholar
  44. Moscovitch, D. & McAndrews, M. P. Material-specific deficits in remembering in patients with unilateral temporal lobe epilepsy and excisions. Neuropsychologia 40, 1335–1342 (2002).
    Article PubMed Google Scholar
  45. Gardiner, J. & Richardson-Klavehn, A., in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 229–244 (Oxford Univ. Press, New York, 2000).
    Google Scholar
  46. Donaldson, W. The role of decision processes in remembering and knowing. Mem. Cogn. 24, 523–533 (1996).
    Article CAS Google Scholar
  47. Dunn, J. C. Remember–know: a matter of confidence. Psychol. Rev. 111, 524–542 (2004).
    Article PubMed Google Scholar
  48. Wixted, J. T. & Stretch, V. In defense of the signal detection interpretation of remember/know judgments. Psychon. Bull. Rev. 11, 616–641 (2004).
    Article PubMed Google Scholar
  49. Rotello, C. M., Macmillan, N. A., Hicks, J. L. & Hautus, M. Interpreting the effects of response bias on remember–know judgments using signal-detection and threshold models. Mem. Cogn. 34, 1598–1614 (2006).
    Article Google Scholar
  50. Wais, P. E., Mickes, L. & Wixted, J. T. Remember/know judgments probe degrees of recollection. J. Cogn. Neurosci. (in the press).
  51. Wirth, S. et al. Single neurons in the monkey hippocampus and learning of new associations. Science 300, 1578–1581 (2003).
    Article CAS PubMed Google Scholar
  52. Davachi, L., Mitchell, J. P. & Wagner, A. D. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc. Natl Acad. Sci. USA 100, 2157–2162 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  53. Kensinger, E. A. & Schacter, D. L. Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. J. Neurosci. 26, 2564–2570 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  54. Ranganath, C. et al. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42, 2–13 (2003).
    Article Google Scholar
  55. Cansino, S., Maquet, P., Dolan, R. J. & Rugg, M. D. Brain activity underlying encoding and retrieval of source memory. Cereb. Cortex 12, 1048–1056 (2002).
    Article PubMed Google Scholar
  56. Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003).
    Article PubMed Google Scholar
  57. Weis, S. et al. Process dissociation between contextual retrieval and item recognition. Neuroreport 15, 2729–2733 (2004).
    PubMed Google Scholar
  58. Yonelinas, A. P. The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang. 46, 441–517 (2002).
    Article Google Scholar
  59. Otten, L. J. Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding. Cereb. Cortex 17, 2030–2038 (2006).
    Article PubMed Google Scholar
  60. Daselaar, S. M., Fleck, M. S. & Cabeza, R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J. Neurophysiol. 96, 1902–1911 (2006).
    Article CAS PubMed Google Scholar
  61. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engel, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci. 3, 1149–1152 (2000).
    Article CAS PubMed Google Scholar
  62. Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. Recollection and familiarity in recognition memory: an event-related fMRI study. J. Neurosci. 19, 3962–3972 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  63. Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. The neural system that mediates familiarity memory. Hippocampus 16, 504–520 (2006).
    Article PubMed Google Scholar
  64. Yonelinas, A. P., Otten, L., Shaw, K. N. & Rugg, M. D. Separating the brain regions involved in recollection and familiarity-strength in recognition memory. J. Neurosci. 25, 3002–3008 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  65. Uncapher, M. R. & Rugg, M. D. Encoding and the durability of episodic memory: a functional magnetic resonance imaging study. J. Neurosci. 25, 7260–7267 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  66. Eldridge, L. L., Engel, S. A., Zeineh, M. M., Bookheimer, S. Y. & Knowlton, B. J. A dissociation of encoding and retrieval processes in the human hippocampus. J. Neurosci. 25, 3280–3286 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  67. Vilberg, K. L. & Rugg, M. D. Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45, 2216–2225 (2007).
    Article PubMed Central PubMed Google Scholar
  68. Sperling, R. et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 20, 1400–1410 (2003). This study of associative learning provides fMRI evidence that strong, recollection-based memories produce detectable hippocampal activity whereas weak, recollection-based memories do not. In this study, the strength of the memory, not recollection or familiarity, determined whether hippocampal activity was detected.
    Article PubMed Google Scholar
  69. Rutishauser, U., Mamelak, A. N. & Schuman, E. N. Single-trial learning of novel stimuli by individual neurons of the human hippocampus–amygdala complex. Neuron 49, 805–813 (2006). This paper provides single-unit evidence of a familiarity signal in the human hippocampus during recognition memory performance.
    Article CAS PubMed Google Scholar
  70. Viskontas, I. V., Knowlton, B. J., Steinmetz, P. N. & Fried, I. Differences in mnemonic processing by neurons in the human hippocampus and parahippocampal regions. J. Cogn. Neurosci. 18, 1654–1662 (2006).
    Article PubMed Google Scholar
  71. Suzuki, W. A. & Eichenbaum, H. The neurophysiology of memory. Ann. NY Acad. Sci. 911, 175–191 (2000).
    Article CAS PubMed Google Scholar
  72. Wilson, F. A. W., Brown, M. W. & Riches, I. P. in Cellular Mechanisms of Conditioning and Behavioral Plasticity (eds Woody, C. D., Alkon, D. L. & McGaugh, J. L.) 313–328 (Plenum, New York, 1988).
    Book Google Scholar
  73. Otto, T. & Eichenbaum, H. Neuronal activity in the hippocampus during delayed nonmatching to sample performance in rats: evidence for hippocampal processing in recognition memory. Hippocampus 2, 323–334 (1992).
    Article CAS PubMed Google Scholar
  74. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999).
    Article CAS PubMed Google Scholar
  75. Miller, E. K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991).
    Article CAS PubMed Google Scholar
  76. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  77. Xiang, J. Z. & Brown, M. W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998).
    Article CAS PubMed Google Scholar
  78. Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A. & Wagner, A. D. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 47, 751–761 (2005).
    Article CAS PubMed Google Scholar
  79. Henson, R. N., Cansino, S., Herron, J. E., Robb, W. G. & Rugg, M. D. A familiarity signal in human anterior medial temporal cortex? Hippocampus 13, 301–304 (2003).
    Article CAS PubMed Google Scholar
  80. Henson, R. N., Hornberger, M. & Rugg, M. D. Further dissociating the processes in recognition memory: an fMRI study. J. Cogn. Neurosci. 17, 1058–1073 (2005).
    Article PubMed Google Scholar
  81. Fernández, G. & Tendolkar, I. The rhinal cortex: 'gatekeeper' of the declarative memory system. Trends Cogn. Sci. 10, 358–362 (2006).
    Article PubMed Google Scholar
  82. Law, J. R. et al. fMRI activity during the gradual acquisition and expression of paired-associate memory. J. Neurosci. 25, 5720–5729 (2005). This study demonstrates activity in the perirhinal cortex and other medial temporal lobe structures during a recollection-based task of associative learning.
    Article CAS PubMed PubMed Central Google Scholar
  83. Kirwan, C. B. & Stark, C. E. L. Medial temporal lobe activation during encoding and retrieval of novel face–name pairs. Hippocampus 14, 919–930 (2004).
    Article PubMed Central PubMed Google Scholar
  84. Düzel, E. et al. Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. J. Neurosci. 23, 9439–9444 (2003).
    Article PubMed PubMed Central Google Scholar
  85. Jackson, O. & Schacter, D. L. Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage 21, 456–462 (2004).
    Article PubMed Google Scholar
  86. Staresina, B. P. & Davachi, L. Differential encoding mechanisms for subsequent associative recognition and free recall. J. Neurosci. 26, 9162–9172 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  87. Tendolkar, I. et al. Probing the neural correlates of associative memory formation: a parametrically analyzed event-related functional MRI study. Brain Res. 1142, 159–168 (2007).
    Article CAS PubMed Google Scholar
  88. Kohler, S., Danckert, S., Gati, J. S. & Ravi, R. S. Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI. Hippocampus 15, 763–774 (2005).
    Article PubMed Google Scholar
  89. Naya, Y., Yoshida, M. & Miyashita, Y. Forward processing of long-term associative memory in monkey inferotemporal cortex. J. Neurosci. 23, 2861–2871 (2003). This study provides single-unit evidence from monkeys of associative learning signals in the perirhinal cortex.
    Article CAS PubMed PubMed Central Google Scholar
  90. Messinger, A., Squire, L. R., Zola, S. M. & Albright, T. D. Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc. Natl Acad. Sci. USA 98, 12239–12244 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  91. Yanike, M., Smith, A. C., Brown, E. N. & Suzuki, W. A. Changes in the selectivity of learning-related cells in perirhinal cortex during location-scene task in primates. Soc. Neurosci. Abst. 574.22 (2006).
  92. Murray, E. A., Baxter, M. G. & Gaffan, D. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav. Neurosci. 112, 1291–1303 (1998).
    Article CAS PubMed Google Scholar
  93. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  94. Suzuki, W. A. in Hippocampal Place Fields: Relevance to Learning and Memory (ed. Mizumori, S.) (Oxford Univ. Press) (in the press).
  95. Underwood, B. Attributes of memory. Psychol. Rev. 76, 559–573 (1969).
    Article Google Scholar
  96. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).
    Article CAS PubMed Google Scholar
  97. Squire, L. R., Zola-Morgan, S. & Chen, K. Human amnesia and animal models of amnesia: performance of amnesic patients on tests designed for the monkey. Behav. Neurosci. 11, 210–221 (1988).
    Article Google Scholar
  98. Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P. & Amaral, D. G. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J. Neurosci. 9, 4355–4370 (1992).
    Article Google Scholar
  99. Alvarez, P., Zola-Morgan, S. & Squire, L. R. Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J. Neurosci. 15, 3796–3807 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  100. Beason-Held, L. L., Rosene, D. L., Killiany, R. J. & Moss, M. B. Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 9, 562–574 (1999).
    Article CAS PubMed Google Scholar
  101. Zola, S. M. et al. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20, 451–463 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  102. Nemanic, S., Alvarado, M. C. & Bachevalier, J. The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object delayed nonmatching in monkeys. J. Neurosci. 24, 2013–2026 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  103. Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18, 6568–6582 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  104. Mumby, D. G., Wood, E. R. & Pinel, J. P. J. Object-recognition memory is only mildly impaired in rats with lesions of the hippocampus and amygdala. Psychobiology 20, 18–27 (1992).
    Article Google Scholar
  105. Mumby, D. G., Pinel, J. P. J., Kornecook, T. J., Shen, M. J. & Redila, V. A. Memory deficits following lesions of hippocampus or amygdala in rat: assessment by an object-memory test battery. Psychobiology 23, 26–36 (1995).
    Article Google Scholar
  106. Clark, R. E., West, A. N., Zola, S. M. & Squire, L. R. Rats with lesions of the hippocampus are impaired on the delayed nonmatching-to-sample task. Hippocampus 11, 176–186 (2001).
    Article CAS PubMed Google Scholar
  107. Prusky, G. T., Douglas, R. M., Nelson, L., Shabanpoor, A. & Sutherland, R. J. Visual memory task for rats reveals an essential role for hippocampus and perirhinal cortex. Proc. Natl Acad. Sci. USA 101, 5064–5068 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  108. Mumby, D. G. et al. Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia. Behav. Neurosci. 110, 266–281 (1996).
    Article CAS PubMed Google Scholar
  109. Duva, C. A. et al. Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behav. Neurosci. 111, 1184–1196 (1997).
    Article CAS PubMed Google Scholar
  110. McKee, R. D. & Squire, L. R. On the development of declarative memory. J. Exp. Psychol. Learn. Mem. Cogn. 19, 397–404 (1993).
    Article CAS PubMed Google Scholar
  111. Pascalis, O., Hunkin, N. M., Holdstock, J. S., Isaac, C. L. & Mayes, A. R. Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item recognition. Neuropsychologia 42, 1293–1300 (2004).
    Article CAS PubMed Google Scholar
  112. Clark, R. E., Zola, S. M. & Squire, L. R. Impaired recognition memory in rats after damage to the hippocampus. J. Neurosci. 20, 8853–8860 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  113. Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neurosci. 3, 238–244 (2000).
    Article CAS PubMed Google Scholar
  114. Gould, T. J. et al. Effects of hippocampal lesions on patterned motor learning in the rat. Brain Res. Bull. 58, 581–586 (2002).
    Article CAS PubMed Google Scholar
  115. Baker, K. B. & Kim, J. J. Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn. Mem. 9, 58–65 (2002).
    Article PubMed Central PubMed Google Scholar
  116. Gaskin, S., Tremblay, A. & Mumby, D. G. Retrograde and anterograde object recognition in rats with hippocampal lesions. Hippocampus 13, 962–969 (2003).
    Article PubMed Google Scholar
  117. Hammond, R. S., Tull, L. E. & Stackman, R. W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem. 82, 26–34 (2004).
    Article PubMed Google Scholar
  118. Broadbent, N. J., Squire, L. R. & Clark, R. E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl Acad. Sci. USA 101, 14515–14520 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  119. de Lima, M. N., Luft, T., Roesler, R. & Schroder, N. Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neurosci. Lett. 405, 142–146 (2006).
    Article PubMed CAS Google Scholar
  120. Ainge, J. A. et al. The role of the hippocampus in object recognition in rats: examination of the influence of task parameters and lesion size. Behav. Brain Res. 167, 183–195 (2006).
    Article PubMed Google Scholar
  121. Rossato, J. I. et al. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36–46 (2007).
    Article PubMed Central PubMed Google Scholar
  122. Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M. & Bussey, T. J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J. Neurosci. 24, 5901–5908 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  123. Forwood, S. E., Winters, B. D. & Bussey, T. J. Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15, 347–355 (2005).
    Article CAS PubMed Google Scholar
  124. Mumby, D. G., Tremblay, A., Lecluse, V. & Lehmann, H. Hippocampal damage and anterograde object-recognition in rats after long retention intervals. Hippocampus 15, 1050–1056 (2005).
    Article PubMed Google Scholar
  125. O'Brien, N., Lehmann, H., Lecluse, V. & Mumby, D. G. Enhanced context-dependency of object recognition in rats with hippocampal lesions. Behav. Brain Res. 170, 156–162 (2006).
    Article PubMed Google Scholar
  126. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004). This paper reviews the relationship between neural activity and the fMRI BOLD signal. A key conclusion is that the BOLD response can depend nonlinearly on the neural signal and that this nonlinearity can differ across brain regions.
    Article CAS PubMed Google Scholar
  127. Heeger, D. J. & Ress, D. What does fMRI tell us about neuronal activity? Nature Rev. Neurosci. 3, 142–151 (2002).
    Article CAS Google Scholar
  128. Macmillan, N. A. & Creelman, C. D. Detection Theory: A User's Guide (2nd ed.) (Lawrence Erlbaum Associates, 2005).
    Google Scholar
  129. Ratcliff, R., Sheu, C. F. & Gronlund, S. D. Testing global memory models using ROC curves. Psychol. Rev. 99, 518–535 (1992).
    Article CAS PubMed Google Scholar

Download references