The neurobiology of psychedelic drugs: implications for the treatment of mood disorders (original) (raw)
Hofmann, A. & Schultes, R. E. Plants of the Gods (McGraw-Hill Book Company, Maidenhead, UK, 1979). Google Scholar
Hofmann, A. in Chemical Constitution and Pharmacodynamic Actions (ed. Burger, A.) 169–235 (M.Dekker, New York, 1968). Google Scholar
Domino, E. F., Kamenka, J. M. & Gneste, P. The joint French–US seminar on phencyclidine and related arylcyclohexylamines. Trends Pharmacol. Sci.9, 363–367 (1983). Article Google Scholar
Hasler, F., Grimberg, U., Benz, M. A., Huber, T. & Vollenweider, F. X. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology172, 145–156 (2004). ArticleCASPubMed Google Scholar
Dittrich, A. in 50 Years of LSD. Current Status and Perspectives of Hallucinogens (eds Pletscher, A. & Ladewig, D.) 101–118 (Parthenon, New York, 1994). Google Scholar
Fischer, R., Marks, P. A., Hill, R. M. & Rockey, M. A. Personality structure as the main determinant of drug induced (model) psychoses. Nature218, 296–298 (1968). ArticleCASPubMed Google Scholar
Leuner, H. Die Experimentelle Psychose (Springer, Berlin Göttingen Heidelberg, 1962). Book Google Scholar
Hoch, P. H., Cattell, J. P. & Pennes, H. H. Effects of mescaline and lysergic acid (d-LSD-25). Am. J. Psychiatry108, 579–584 (1952). ArticleCASPubMed Google Scholar
Gouzoulis-Mayfrank, E. et al. Hallucinogenic drug induced states resemble acute endogenous psychoses: results of an empirical study. Eur. Psychiatry13, 399–406 (1998). ArticleCASPubMed Google Scholar
Geyer, M. A. & Vollenweider, F. X. Serotonin research: contributions to understanding psychoses. Trends Pharmacol. Sci.29, 445–453 (2008). ArticleCASPubMed Google Scholar
Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch. Gen. Psychiatry51, 199–214 (1994). ArticleCASPubMed Google Scholar
Anis, N. A., Berry, S. C., Burton, N. R. & Lodge, D. The dissociative anesthetics, ketamine and phencyclidine selective reduce excitation of central mammalian neurons by _N_-methyl-D-aspartate. Br. J. Pharmacol.79, 565–575 (1983). ArticleCASPubMedPubMed Central Google Scholar
Sandison, R. A. Psychological aspects of the LSD treatment of neuroses. J. Ment Sci.100, 508–515 (1954). ArticleCASPubMed Google Scholar
Schmiege, G. R. Jr. LSD as a therapeutic tool. J. Med. Soc. N.J.60, 203–207 (1963). PubMed Google Scholar
Malleson, N. Acute adverse reactions to LSD in clinical and experimental use in the United Kingdom. Br. J. Psychiatry118, 229–230 (1971). ArticleCASPubMed Google Scholar
Hoffer, A. in The Uses and Implications of Hallucinogenic Drugs (eds Aaronson, B. & Osmond, H.) 357–366 (Hogarth Press, London, 1970). Google Scholar
Abramson, H. The use of LSD in Psychotherapy and Alcoholism (Bobbs-Merrill, New York, 1967). Google Scholar
Kast, E. in LSD: The Consciousness Expanding Drug (ed. Solomon, D.) 241–256 (G.P. Putman, New York, 1964). Google Scholar
Pahnke, W. N., Kurland, A. A., Goodman, L. E. & Richards, W. A. LSD-assisted psychotherapy with terminal cancer patients. Curr. Psychiatr. Ther.9, 144–152 (1969). CASPubMed Google Scholar
Leuner, H. in 50 Years of LSD: Current Status and Perspectives of Hallucinogen Research (eds Pletscher, A. & Ladewig, D.) 175–189 (Parthenon, New York, 1994). Google Scholar
Kurland, A. A., Unger, S., Shaffer, J. W. & Savage, C. Psychedelic therapy utilizing LSD in the treatment of the alcoholic patient: a preliminary report. Am. J. Psychiatry123, 1202–1209 (1967). ArticleCASPubMed Google Scholar
Skolnick, P., Popik, P. & Trullas, R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol. Sci.30, 563–569 (2009). ArticleCASPubMed Google Scholar
Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry47, 351–354 (2000). ArticleCASPubMed Google Scholar
Zarate, C. A. Jr et al. A randomized trial of an _N_-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry63, 856–864 (2006). ArticleCASPubMed Google Scholar
Phelps, L. E. et al. Family history of alcohol dependence and initial antidepressant response to an _N_-methyl-D-aspartate antagonist. Biol. Psychiatry65, 181–184 (2009). ArticleCASPubMed Google Scholar
Price, R. B., Nock, M. K., Charney, D. S. & Mathew, S. J. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol. Psychiatry66, 522–526 (2009). ArticleCASPubMedPubMed Central Google Scholar
Aan het Rot, M. et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol. Psychiatry67, 139–145 (2010). ArticleCASPubMed Google Scholar
Mathew, S. J. et al. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial. Int. J. Neuropsychopharmacol.13, 71–82 (2010). ArticleCASPubMed Google Scholar
Holsboer, F. How can we realize the promise of personalized antidepressant medicines? Nature Rev. Neurosci.9, 638–646 (2008). ArticleCAS Google Scholar
Salvadore, G. et al. Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology35, 1415–1422 (2010). ArticleCASPubMedPubMed Central Google Scholar
Salvadore, G. et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol. Psychiatry65, 289–295 (2009). ArticleCASPubMed Google Scholar
Sanacora, G., Zarate, C. A., Krystal, J. H. & Manji, H. K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nature Rev. Drug Discov.7, 426–437 (2008). ArticleCAS Google Scholar
Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Rev. Neurosci.8, 413–426 (2007). ArticleCAS Google Scholar
Krupitsky, E. et al. Ketamine psychotherapy for heroin addiction: immediate effects and two-year follow-up. J. Subst. Abuse Treatment23, 273–283 (2002). Article Google Scholar
Moreno, F. A., Wiegand, C. B., Taitano, E. K. & Delgado, P. L. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry67, 1735–1740 (2006). ArticleCASPubMed Google Scholar
Brandrup, E. & Vanggaard, T. LSD treatment in a severe case of compulsive neurosis. Acta Psychiatr. Scand.55, 127–141 (1977). ArticleCASPubMed Google Scholar
Leonard, H. L. & Rapoport, J. L. Relief of obsessive–compulsive symptoms by LSD and psilocin. Am. J. Psychiatry144, 1239–1240 (1987). CASPubMed Google Scholar
Moreno, F. A. & Delgado, P. L. Hallucinogen-induced relief of obsessions and compulsions. Am. J. Psychiatry154, 1037–1038 (1997). CASPubMed Google Scholar
Sewell, R. A., Halpern, J. H. & Pope, H. G. Jr. Response of cluster headache to psilocybin and LSD. Neurology66, 1920–1922 (2006). ArticlePubMed Google Scholar
Gonzalez-Maeso, J. & Sealfon, S. C. Agonist-trafficking and hallucinogens. Curr. Med. Chem.16, 1017–1027 (2009). ArticleCASPubMed Google Scholar
Winter, J. C. Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology (Berlin)203, 251–263 (2009). ArticleCAS Google Scholar
Large, C. H. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J. Psychopharmacol.21, 283–301 (2007). ArticleCASPubMed Google Scholar
Quirk, M. C., Sosulski, D. L., Feierstein, C. E., Uchida, N. & Mainen, Z. F. A defined network of fast-spiking interneurons in orbitofrontal cortex: responses to behavioral contingencies and ketamine administration. Front. Syst. Neurosci.3, 13 (2009). ArticlePubMedPubMed Central Google Scholar
DeRubeis, R. J., Siegle, G. J. & Hollon, S. D. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Rev. Neurosci.9, 788–796 (2008). ArticleCAS Google Scholar
Clark, L., Chamberlain, S. R. & Sahakian, B. J. Neurocognitive mechanisms in depression: implications for treatment. Annu. Rev. Neurosci.32, 57–74 (2009). ArticleCASPubMed Google Scholar
Geyer, M. A., Nichols, D. E. & Vollenweider, F. X. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 741–748 (Academic Press, Oxford, 2009). Google Scholar
Marona-Lewicka, D., Thisted, R. A. & Nichols, D. E. Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacologia (Berlin)180, 427–435 (2005). ArticleCAS Google Scholar
Glennon, R. A., Titeler, M. & McKenney, J. D. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci.35, 2505–2511 (1984). ArticleCASPubMed Google Scholar
Aghajanian, G. K. & Marek, G. J. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropsychopharmacology36, 589–599 (1997). CAS Google Scholar
Aghajanian, G. K. & Marek, G. J. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res.825, 161–171 (1999). ArticleCASPubMed Google Scholar
Wing, L. L., Tapson, G. S. & Geyer, M. A. 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology100, 417–425 (1990). ArticleCASPubMed Google Scholar
Sipes, T. E. & Geyer, M. A. DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav. Pharmacol.6, 839–842 (1995). ArticleCASPubMed Google Scholar
Gonzalez-Maeso, J. et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron53, 439–452 (2007). ArticleCASPubMed Google Scholar
Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F. I., Bäbler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport9, 3897–3902 (1998). ArticleCASPubMed Google Scholar
Schmid, C. L., Raehal, K. M. & Bohn, L. M. Agonist-directed signaling of the serotonin 2A receptor depends on b-arrestin-2 interactions in vivo. Proc. Natl Acad. Sci. USA105, 1079–1084 (2008). ArticleCASPubMedPubMed Central Google Scholar
Puig, M. V., Celada, P., az-Mataix, L. & Artigas, F. In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb. Cortex13, 870–882 (2003). ArticlePubMed Google Scholar
Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A. & Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc. Natl Acad. Sci. USA104, 9870–9875 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Aghajanian, G. K. & Marek, G. J. Serotonin and hallucinogens. Neuropsychopharmacology21, 16S–23S (1999). ArticleCASPubMed Google Scholar
Marek, G. J., Wright, R. A., Gewirtz, J. C. & Schoepp, D. D. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience105, 379–392 (2001). ArticleCASPubMed Google Scholar
Aghajanian, G. K. Modeling 'psychosis' in vitro by inducing disordered neuronal network activity in cortical brain slices. Psychopharmacology (Berlin)206, 575–585 (2009). ArticleCAS Google Scholar
Zhang, C. & Marek, G. J. AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog. Neuropsychopharmacol. Biol. Psychiatry32, 62–71 (2008). ArticlePubMedCAS Google Scholar
Benneyworth, M. A. et al. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol. Pharmacol.72, 477–484 (2007). ArticleCASPubMed Google Scholar
Lambe, E. K. & Aghajanian, G. K. Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology31, 1682–1689 (2006). ArticleCASPubMed Google Scholar
Celada, P., Puig, M. V., Casanovas, J. M., Guillazo, G. & Artigas, F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci.21, 9917–9929 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vazquez-Borsetti, P., Cortes, R. & Artigas, F. Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb. Cortex19, 1678–1686 (2009). ArticlePubMed Google Scholar
Vollenweider, F. X., Vontobel, P., Hell, D. & Leenders, K. L. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man: A PET study with [11C]raclopride. Neuropsychopharmacology20, 424–433 (1999). ArticleCASPubMed Google Scholar
Jones, K. A. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl Acad. Sci. USA106, 19575–19580 (2009). ArticleCASPubMedPubMed Central Google Scholar
Buckholtz, N. S., Zhou, D. F., Freedman, D. X. & Potter, W. Z. Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain. Neuropsychopharmacology3, 137–148 (1990). CASPubMed Google Scholar
Gresch, P. J., Smith, R. L., Barrett, R. J. & Sanders-Bush, E. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex. Neuropsychopharmacology30, 1693–1702 (2005). ArticleCASPubMed Google Scholar
Shelton, R. C., Sanders-Bush, E., Manier, D. H. & Lewis, D. A. Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase, A. Neuroscience158, 1406–1415 (2008). ArticlePubMedCAS Google Scholar
Bhagwagar, Z. et al. Increased 5-HT2A receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11C]MDL 100,907. Am. J. Psychiatry163, 1580–1587 (2006). ArticlePubMed Google Scholar
Meyer, J. H. et al. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am. J. Psychiatry160, 90–99 (2003). ArticlePubMed Google Scholar
Sibille, E. et al. Antisense inhibition of 5-hydroxytryptamine2a receptor induces an antidepressant-like effect in mice. Mol. Pharmacol.52, 1056–1063 (1997). ArticleCASPubMed Google Scholar
Yamauchi, M., Miyara, T., Matsushima, T. & Imanishi, T. Desensitization of 5-HT2A receptor function by chronic administration of selective serotonin reuptake inhibitors. Brain Res.1067, 164–169 (2006). ArticleCASPubMed Google Scholar
Gomez-Gil, E. et al. Decrease of the platelet 5-HT2A receptor function by long-term imipramine treatment in endogenous depression. Hum. Psychopharmacol.19, 251–258 (2004). ArticleCASPubMed Google Scholar
Cohen, H. Anxiolytic effect and memory improvement in rats by antisense oligodeoxynucleotide to 5-hydroxytryptamine-2A precursor protein. Depress. Anxiety.22, 84–93 (2005). ArticleCASPubMed Google Scholar
Weisstaub, N. V. et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science313, 536–540 (2006). ArticleCASPubMed Google Scholar
Anisman, H., Merali, Z. & Stead, J. D. Experiential and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. Neurosci. Biobehav. Rev.32, 1185–1206 (2008). ArticleCASPubMed Google Scholar
Lukkes, J., Vuong, S., Scholl, J., Oliver, H. & Forster, G. Corticotropin-releasing factor receptor antagonism within the dorsal raphe nucleus reduces social anxiety-like behavior after early-life social isolation. J. Neurosci.29, 9955–9960 (2009). ArticleCASPubMedPubMed Central Google Scholar
Reul, J. M. & Holsboer, F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol.2, 23–33 (2002). ArticleCASPubMed Google Scholar
Magalhaes, A. C. et al. CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nature Neurosci.13, 622–629 (2010). ArticleCASPubMed Google Scholar
Frokjaer, V. G. et al. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol. Psychiatry63, 569–576 (2008). ArticleCASPubMed Google Scholar
Amat, J. et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neurosci.8, 365–371 (2005). ArticleCASPubMed Google Scholar
Kupers, R. et al. A PET [18F]altanserin study of 5-HT12A receptor binding in the human brain and responses to painful heat stimulation. Neuroimage44, 1001–1007 (2009). ArticlePubMed Google Scholar
Oye, I., Paulsen, O. & Maurset, A. Effects of ketamine on sensory perception: Evidence for a role of _N_-methyl-D-aspartate receptors. J. Pharmac. Exp. Ther.260, 1209–1213 (1992). CAS Google Scholar
Moghaddam, B., Adams, B., Verma, A. & Daly, D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci.17, 2921–2927 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Gil, X. et al. Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology32, 2087–2097 (2007). ArticleCASPubMed Google Scholar
Jackson, M. E., Homayoun, H. & Moghaddam, B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc. Natl Acad. Sci. USA101, 8467–8472 (2004). ArticleCASPubMedPubMed Central Google Scholar
Homayoun, H. & Moghaddam, B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci.27, 11496–11500 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jodo, E. et al. Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb. Cortex15, 663–669 (2005). ArticlePubMed Google Scholar
Moghaddam, B. & Adams, B. W. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science281, 1349–1352 (1998). ArticleCASPubMed Google Scholar
Preskorn, S. H. et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective _N_-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol.28, 631–637 (2008). ArticleCASPubMed Google Scholar
Maeng, S. et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry63, 349–352 (2008). ArticleCASPubMed Google Scholar
Anand, A. et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of _N_-methyl-D-aspartate receptor antagonists. Arch. Gen. Psychiatry57, 270–276 (2000). ArticleCASPubMed Google Scholar
Jentsch, J. D., Tran, A., Taylor, J. R. & Roth, R. H. Prefrontal cortical involvement in phencyclidine-induced activation of the mesolimbic dopamine system: behavioral and neurochemical evidence. Psychopharmacology (Berlin)138, 89–95 (1998). ArticleCAS Google Scholar
Breier, A. et al. Effects of NMDA antagonism on striatal dopamine release in healthy subjects — application of a novel PET approach. Synapse29, 142–147 (1998). ArticleCASPubMed Google Scholar
Vollenweider, F. X., Vontobel, P., Leenders, K. L. & Hell, D. Effects of _S_-ketamine on striatal dopamine release: a [11C] raclopride PET study of a model psychosis in humans. J. Psych. Res.34, 35–43 (2000). ArticleCAS Google Scholar
Krystal, J. H. et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology145, 193–204 (1999). ArticleCASPubMed Google Scholar
Varty, G. B., Bakshi, V. P. & Geyer, M. A. M100907, a serotonin 5-HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in sprague-dawley and wistar rats. Neuropsychopharmacology20, 311–321 (1999). ArticleCASPubMed Google Scholar
Snigdha, S. et al. Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J. Pharmacol. Exp. Ther.332, 622–631 (2010). ArticleCASPubMed Google Scholar
Scruggs, J. L., Schmidt, D. & Deutch, A. Y. The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci. Lett.346, 137–140 (2003). ArticleCASPubMed Google Scholar
Muschamp, J. W., Regina, M. J., Hull, E. M., Winter, J. C. & Rabin, R. A. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res.1023, 134–140 (2004). ArticleCASPubMed Google Scholar
Kargieman, L., Santana, N., Mengod, G., Celada, P. & Artigas, F. Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc. Natl Acad. Sci. USA104, 14843–14848 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shi, W. X. & Zhang, X. X. Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine. J. Pharmacol. Exp. Ther.305, 680–687 (2003). ArticleCASPubMed Google Scholar
Vollenweider, F. X. et al. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [F-18]-fluorodeoxyglocose (FDG). Eur. Neuropsychopharmacol.7, 9–24 (1997). ArticleCASPubMed Google Scholar
Vollenweider, F. X. et al. Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology16, 357–372 (1997). ArticleCASPubMed Google Scholar
Vollenweider, F. X., Leenders, K. L., Oye, I., Hell, D. & Angst, J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers measured by FDG-PET. Eur. Neuropsychopharmacol.7, 25–38 (1997). ArticleCASPubMed Google Scholar
Schreckenberger, M. et al. The psilocybin psychosis as a model psychosis paradigma for acute schizophrenia: a PET study with 18-FDG. Eur. J. Nucl. Med.25, 877 (1998). Article Google Scholar
Gouzoulis-Mayfrank, E. et al. Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and D-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18F]FDG. Neuropsychopharmacology20, 565–581 (1999). ArticleCASPubMed Google Scholar
Walter, M. et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch. Gen. Psychiatry66, 478–486 (2009). ArticleCASPubMed Google Scholar
Hasler, G. et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry64, 193–200 (2007). ArticleCASPubMed Google Scholar
Bishop, S. J. Trait anxiety and impoverished prefrontal control of attention. Nature Neurosci.12, 92–98 (2009). ArticleCASPubMed Google Scholar
Bishop, S. J. Neural mechanisms underlying selective attention to threat. Ann. NY Acad. Sci.1129, 141–152 (2008). ArticlePubMed Google Scholar
Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H. & Davidson, R. J. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci.27, 8877–8884 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, C. H. et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology33, 1909–1918 (2008). ArticleCASPubMed Google Scholar
Fu, C. H. et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch. Gen. Psychiatry61, 877–889 (2004). ArticlePubMed Google Scholar
Sheline, Y. I. et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol. Psychiatry50, 651–658 (2001). ArticleCASPubMed Google Scholar
Martinowich, K., Manji, H. & Lu, B. New insights into BDNF function in depression and anxiety. Nature Neurosci.10, 1089–1093 (2007). ArticleCASPubMed Google Scholar
Krystal, J. H. et al. Neuroplasticity as a target for the pharmacotherapy of anxiety disorders, mood disorders, and schizophrenia. Drug Discov. Today14, 690–697 (2009). ArticleCASPubMedPubMed Central Google Scholar
Machado-Vieira, R., Salvadore, G., DiazGranados, N. & Zarate, C. A. Jr. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol. Ther.123, 143–150 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vaidya, V. A., Marek, G. J., Aghajanian, G. K. & Duman, R. S. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J. Neurosci.17, 2785–2795 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cavus, I. & Duman, R. S. Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biol. Psychiatry54, 59–69 (2003). ArticleCASPubMed Google Scholar
Garcia, L. S. et al. Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry33, 450–455 (2009). ArticleCASPubMed Google Scholar
Studerus, E., Kometer, M., Hasler, F. & Vollenweider, F. X. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J. Psychopharmacology (in the press).
Perry, E. B. Jr et al. Psychiatric safety of ketamine in psychopharmacology research. Psychopharmacology (Berlin)192, 253–260 (2007). ArticleCAS Google Scholar
Savage, C., Savage, E., Fadiman, J. & Harman, W. W. LSD: Therapeutic effects of the psychedelic experience. Psychol. Rep.14, 111–120 (1964). Article Google Scholar
Pahnke, W. N., Kurland, A. A., Unger, S., Savage, C. & Grof, S. The experimental use of psychedelic (LSD) psychotherapy. JAMA212, 1856–1863 (1970). ArticleCASPubMed Google Scholar
Kurland, A. A., Grof, S. & Panke, W. N. G. L. E. LSD in the treatment of alcoholics. Pharmakopsychiatr. Neuropsychopharmakol.4, 83–94 (1971). Article Google Scholar
Griffiths, R. R., Richards, W., Johnson, M., McCann, U. & Jesse, R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J. Psychopharmacol.22, 621–632 (2008). ArticleCASPubMedPubMed Central Google Scholar
Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berlin)187, 268–283 (2006). ArticleCAS Google Scholar
Dittrich, A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry31, 80–84 (1998). ArticlePubMed Google Scholar
Vollenweider, F. X. Advances and pathophysiological models of hallucinogen drug actions in humans: a preamble to schizophrenia research. Pharmacopsychiatry31, 92–103 (1998). ArticleCASPubMed Google Scholar
Fischer, R. A cartography of the ecstatic and meditative states. Science174, 897–904 (1971). ArticleCASPubMed Google Scholar
Osmond, H. A review of the clinical effects of psychotomimetic agents. Ann. NY Acad. Sci.66, 418–434 (1957). ArticleCASPubMed Google Scholar
Kurland, A. A. LSD in the supportive care of the terminally ill cancer patient. J. Psychoactive Drugs17, 279–290 (1985). ArticleCASPubMed Google Scholar
Abramson, H. A. The Use of LSD in Psychotherapy and Alcoholism (Bobbs-Merrill, Indianapolis, 1967). Google Scholar
Hollister, L. E., Shelton, J. & Krieger, G. A controlled comparison of lysergic acid diethylamide (LSD) and dextroamphetmine in alcoholics. Am. J. Psychiatry125, 1352–1357 (1969). ArticleCASPubMed Google Scholar
Savage, C. & McCabe, O. L. Residential psychedelic (LSD) therapy for the narcotic addict. A controlled study. Arch. Gen. Psychiatry28, 808–814 (1973). ArticleCASPubMed Google Scholar
Grof, S., Goodman, L. E., Richards, W. A. & Kurland, A. A. LSD-assisted psychotherapy in patients with terminal cancer. Int. Pharmacopsychiatry8, 129–144 (1973). ArticleCASPubMed Google Scholar
Pahnke, W. N. Psychedelic drugs and mystical experience. Int. Psychiatry Clin.5, 149–162 (1969). CASPubMed Google Scholar
Grinspoon, L. & Bakalar, J. B. Psychedelic Drugs Reconsidered (Basic Books., New York, 1979). Google Scholar
Crocket, R., Sandison, R. A. & Walk, A. in Proc. R. Med–Psychol. Assoc. (Lewis & Co., London, 1963). Google Scholar
Leuner H. in Ethnopsychotherapie (eds Dittrich, A. & Scharfetter, C.) 151–161 (Enke, Stuttgard, 1987) Google Scholar
Geert-Jorgensen, E. Further observations regarding hallucinogenic treatment. Acta Psychiatr. Scand.203 (Suppl.), 195–200 (1968). ArticleCAS Google Scholar
Khorramzadeh, E. & Lotfy, A. O. The use of ketamine in psychiatry. Psychosomatics14, 344–346 (1973). ArticleCASPubMed Google Scholar
Mascher, E. in Neuro-Psychopharmacology (eds Brill, H., Cole, J. O., Denker, P., Hippins, H. & Bradley, P. B.) 441–444 (Excerpta-Medica, Amsterdam, 2010). Google Scholar