Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory (original) (raw)
Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci.3, 453–462 (2002). CAS Google Scholar
de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci.6, 463–475 (2005). CAS Google Scholar
Lightman, S. L. & Conway-Campbell, B. L. The crucial role of pulsatile signalling of the HPA axis for continuous dynamic calibration.. Nature Rev. Neurosci. 15 Sep 2010 (doi: 10.1038/nrn2914). CASPubMed Google Scholar
Orchinik, M., Murray, T. F. & Moore, F. L. A corticosteroid receptor in neuronal membranes. Science252, 1848–1851 (1991). CASPubMed Google Scholar
Karst, H. et al. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl Acad. Sci. USA102, 19204–19207 (2005). CASPubMedPubMed Central Google Scholar
Groc, L., Choquet, D. & Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nature Neurosci.11, 868–870 (2008). CASPubMed Google Scholar
Karst, H., Berger, S., Erdmann, G., Schütz, G. & Joëls, M. Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc. Natl Acad. Sci. USA107, 14449–14454 (2010). CASPubMedPubMed Central Google Scholar
Di, S., Malcher-Lopes, R., Marcheselli, V. L., Bazan, N. G. & Tasker, J. G. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and γ-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology146, 4292–4301 (2005). CASPubMed Google Scholar
Venero, C. & Borrell, J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur. J. Neurosci.11, 2465–2473 (1999). CASPubMed Google Scholar
Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S. & Krugers, H. J. Learning under stress: how does it work? Trends Cogn. Sci.10, 152–158 (2006). PubMed Google Scholar
Joëls, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci.10, 459–466 (2009). Google Scholar
McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. NY Acad. Sci.1186, 190–222 (2010). PubMed Google Scholar
Joëls, M. Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 10 Apr 2010 (doi:10.1016/j.psyneuen.2010.03.004). PubMed Google Scholar
Joëls, M. & de Kloet, E. R. Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science245, 1502–1505 (1989). PubMed Google Scholar
de Kloet, E. R., Oitzl, M. S. & Joëls, M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci.22, 422–426 (1999). CASPubMed Google Scholar
Oitzl, M. S. & de Kloet, E. R. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav. Neurosci.106, 62–71 (1992). CASPubMed Google Scholar
Sandi, C. & Rose, S. P. Corticosteroid receptor antagonists are amnestic for passive avoidance learning in day-old chicks. Eur. J. Neurosci.6, 1292–1297 (1994). CASPubMed Google Scholar
Pugh, C. R., Tremblay, D., Fleshner, M. & Rudy, J. W. A selective role for corticosterone in contextual-fear conditioning. Behav. Neurosci.111, 503–511 (1997). CASPubMed Google Scholar
Roozendaal, B. & McGaugh, J. L. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol. Learn. Mem.65, 1–8 (1996). CASPubMed Google Scholar
Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nature Rev. Neurosci.10, 423–433 (2009). CAS Google Scholar
Oitzl, M. S., Reichardt, H. M., Joëls, M. & de Kloet, E. R. Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc. Natl Acad. Sci. USA98, 12790–12795 (2001). CASPubMedPubMed Central Google Scholar
Roozendaal, B. et al. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci.30, 5037–5046 (2010). CASPubMedPubMed Central Google Scholar
de Quervain, D. J., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature394, 787–790 (1998). CASPubMed Google Scholar
Brinks, V., de Kloet, E. R. & Oitzl, M. S. Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp. Neurol.216, 375–382 (2009). CASPubMed Google Scholar
Schwabe, L., Wolf, O. T. & Oitzl, M. S. Memory formation under stress: quantity and quality. Neurosci. Biobehav. Rev.34, 584–591 (2010). PubMed Google Scholar
Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature361, 31–39 (1993). CASPubMed Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). CASPubMed Google Scholar
Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci.9, 65–75 (2008). CAS Google Scholar
Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science308, 83–88 (2005). CASPubMed Google Scholar
Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci.17, 31–108 (1994). CASPubMed Google Scholar
Mayer, M. L. & Armstrong, N. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol.66, 161–181 (2004). CASPubMed Google Scholar
Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron62, 254–268 (2009). CASPubMedPubMed Central Google Scholar
Kennedy, M. J. & Ehlers, M. D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci.29, 325–362 (2006). CASPubMedPubMed Central Google Scholar
Kapitein, L. C. et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol.20, 290–299 (2010). CASPubMed Google Scholar
Groc, L. & Choquet, D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res.326, 423–438 (2006). CASPubMed Google Scholar
Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell135, 535–548 (2008). CASPubMedPubMed Central Google Scholar
Hoogenraad, C. C. et al. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes. PLoS Biol.8, e1000283 (2010). PubMedPubMed Central Google Scholar
Kennedy, M. J., Davison, I. G., Robinson, C. G. & Ehlers, M. D. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell141, 524–535 (2010). CASPubMedPubMed Central Google Scholar
Yudowski, G. A. et al. Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J. Neurosci.27, 11112–11121 (2007). CASPubMedPubMed Central Google Scholar
Leonoudakis, D., Zhao, P. & Beattie, E. C. Rapid tumor necrosis factor α-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J. Neurosci.28, 2119–2130 (2008). CASPubMedPubMed Central Google Scholar
Lin, D. T. et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nature Neurosci.12, 879–887 (2009). CASPubMed Google Scholar
Rácz, B., Blanpied, T. A., Ehlers, M. D. & Weinberg, R. J. Lateral organization of endocytic machinery in dendritic spines. Nature Neurosci.7, 917–918 (2004). PubMed Google Scholar
Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem.76, 823–847 (2007). CASPubMed Google Scholar
Petrini, E. M. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron16, 92–105 (2009). Google Scholar
Makino, H. & Malinow, R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron64, 381–390 (2009). CASPubMedPubMed Central Google Scholar
Yudowski, G. A., Puthenveedu, M. A. & von Zastrow, M. Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane. Nature Neurosci.9, 622–627 (2006). CASPubMed Google Scholar
Yang, Y., Wang, X. B., Frerking, M. & Zhou, Q. Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc. Natl Acad. Sci. USA105, 11388–11393 (2008). CASPubMedPubMed Central Google Scholar
Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neurosci.10, 647–658 (2009). CAS Google Scholar
Takahashi, T., Svoboda, K., Malinow, R. Experience strengthening transmission by driving AMPA receptors into synapses. Science299, 1585–1588 (2003). CASPubMed Google Scholar
Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science313, 1093–1097 (2006). CASPubMed Google Scholar
Matsuo, N., Reijmers, L. & Mayford, M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science319, 1104–1107 (2008). CASPubMedPubMed Central Google Scholar
Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science284, 1805–1811 (1999). CASPubMed Google Scholar
Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell105, 331–343 (2001). CASPubMed Google Scholar
Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nature Neurosci.9, 602–604 (2006). CASPubMed Google Scholar
Adesnik, H. & Nicoll, R. A. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J. Neurosci.25, 4598–4602 (2007). Google Scholar
Smith, G. B., Heynen, A. J. & Bear, M. F. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Phil. Trans. R. Soc. Lond. B364, 357–367 (2009). Google Scholar
Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol.16, 277–280 (2006). Google Scholar
Isaac, J. T., Ashby, M. & McBain, C. J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron54, 859–871 (2007). CASPubMed Google Scholar
Olijslagers, J. E. et al. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur. J. Neurosci.27, 2542–2550 (2008). CASPubMed Google Scholar
Martin, S. et al. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS ONE4, e4714 (2009). PubMedPubMed Central Google Scholar
Karst, H. & Joëls, M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J. Neurophysiol.94, 3479–3486 (2005). CASPubMed Google Scholar
Conboy, L. & Sandi, C. Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoids action. Neuropharmacology35, 674–685 (2010). CAS Google Scholar
Wiegert, O., Joëls, M. & Krugers, H. Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus. Learn. Mem.13, 110–113 (2006). CASPubMed Google Scholar
Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell131, 160–173 (2007). CASPubMed Google Scholar
Blank, T. et al. Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning. J. Neurosci.23, 700–707 (2003). CASPubMedPubMed Central Google Scholar
Carlson, G., Wang, Y. & Alger, B. E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature Neurosci.5, 723–724 (2002). CASPubMed Google Scholar
Campolongo, P. et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc. Natl Acad. Sci. USA106, 4888–4493 (2009). CASPubMedPubMed Central Google Scholar
Roozendaal, B., Schelling, G. & McGaugh, J. L. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the β-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J. Neurosci.28, 6642–6651 (2008). CASPubMedPubMed Central Google Scholar
Pu, Z., Krugers, H. J. & Joëls, M. Corticosterone time-dependently modulates β-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus. Learn. Mem.14, 359–367 (2007). CASPubMedPubMed Central Google Scholar
Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature424, 677–681 (2002). Google Scholar
Saglietti, L. et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron54, 461–477 (2007). CASPubMed Google Scholar
Wiegert, O., Pu, Z., Shor, S., Joëls, M. & Krugers, H. Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro. Neuroscience135, 403–411 (2005). CASPubMed Google Scholar
Abraham, W. V. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci.19, 126–130 (1996). CASPubMed Google Scholar
Diamond, D. M., Park, C. R. & Woodson, JC . Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus14, 281–291 (2004). PubMed Google Scholar
Woodson, J. C., Macintosh, D., Fleshner, M. & Diamond, D. M. Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation, and fear versus arousal effects on memory. Learn. Mem.10, 326–336 (2003). PubMedPubMed Central Google Scholar
Zoladz, P. R., Woodson, J. C., Haynes, V. F. & Diamond, D. M. Activation of a remote (1-year old) emotional memory interferes with the retrieval of a newly formed hippocampus -dependent memory in rats. Stress13, 36–52 (2010). PubMed Google Scholar
Xu, L., Holscher, C., Anwyl, R. & Rowan, M. J. Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc. Natl Acad. Sci. USA95, 3204–3208 (1998). CASPubMedPubMed Central Google Scholar
Coussens, C. M., Kerr, D. S. & Abraham, W. C. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels. J. Neurophysiol.78, 1–9 (1997). CASPubMed Google Scholar
Shimshek, D. R. et al. Forebrain-specific glutamate receptor B deletion impairs spatial memory but not hippocampal field long-term potentiation. J. Neurosci.26, 8428–8440 (2006). CASPubMedPubMed Central Google Scholar
Migues, P. V. et al. PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neurosci.13, 630–634 (2010). CASPubMed Google Scholar
Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol.17, 343–352 (2007). CASPubMed Google Scholar
Farrant, M. & Cull-Candy, S. G. AMPA receptors — another twist? Science327, 1463–1465 (2010). CASPubMed Google Scholar
Schwenk. J. et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science323, 1313–1319 (2009).
von Engelhardt, J. et al. CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science327, 1518–1522 (2010). CASPubMed Google Scholar
Schlager, M. A. & Hoogenraad, C. C. Basic mechanisms for recognition and transport of synaptic cargos. Mol. Brain.2, 25 (2010). Google Scholar
Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron61, 85–100 (2009). CASPubMed Google Scholar
Hotulainen, P. & Hoogenraad, C. C. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol.189, 619–629 (2010). CASPubMedPubMed Central Google Scholar
Janke, C. & Kneussel, M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci.33, 362–372 (2010). CASPubMed Google Scholar
Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neurosci.6, 136–143 (2003). CASPubMed Google Scholar
Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science287, 2262–2267 (2000). CASPubMed Google Scholar
Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron51, 213–225 (2006). CASPubMed Google Scholar
Derkach, V. A., Oh, M. C., Guire, E. S. & Soderling, T. R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Rev. Neurosci.8, 101–113 (2007). CAS Google Scholar
Revest, J. M. et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neurosci.8, 664–672 (2005). CASPubMed Google Scholar
Liu, W., Yuen, E. Y. & Yan, Z. The stress hormone corticosterone increases synaptic α-amino-3-hydroxy-5-methyl-4-isozazolepropionic acid (AMPA) receptors via serum-and glucocorticoids-inducible kinase (SGK) regulation of the GDI–Rab4 complex. J. Biol. Chem.285, 6101–6108 (2010). CASPubMedPubMed Central Google Scholar
Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron.37, 577–582 (2003). CASPubMed Google Scholar
Winder, D. G. et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron24, 715–726 (1999). CASPubMed Google Scholar
Groc, L. & Choquet, D. Measurement and characteristics of neurotransmitter receptor surface trafficking. Mol. Membr. Biol.25, 344–352 (2008). CASPubMed Google Scholar
Renner, M. L., Cognet, L., Lounis, B., Triller, A. & Choquet, D. The excitatory postsynaptic density is a size exclusion diffusion environment. Neuropharmalogy56, 30–36 (2009). CAS Google Scholar
Diamond, D. M, Bennett, M. C., Fleshner, M. & Rose, G. M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus2, 421–430 (1992). CASPubMed Google Scholar
Xu, L., Anwyl, R. & Rowan, M. J. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature387, 497–500 (1997). CASPubMed Google Scholar
Kim, J. J., Lee, H. J., Han, J. S. & Packard, M. G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci.21, 5222–5228 (2001). CASPubMedPubMed Central Google Scholar