Neuronal circuitry for pain processing in the dorsal horn (original) (raw)
Sivilotti, L. & Woolf, C. J. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J. Neurophysiol.72, 169–179 (1994). CASPubMed Google Scholar
Yaksh, T. L. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain37, 111–123 (1989). CASPubMed Google Scholar
Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol.96, 414–495 (1952). CASPubMed Google Scholar
Woodbury, C. J., Ritter, A. M. & Koerber, H. R. On the problem of lamination in the superficial dorsal horn of mammals: a reappraisal of the substantia gelatinosa in postnatal life. J. Comp. Neurol.417, 88–102 (2000). CASPubMed Google Scholar
Dhaka, A., Earley, T. J., Watson, J. & Patapoutian, A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J. Neurosci.28, 566–575 (2008). CASPubMedPubMed Central Google Scholar
Liu, Q. et al. Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nature Neurosci.10, 946–948 (2007). CASPubMed Google Scholar
Seal, R. P. et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature462, 651–655 (2009). CASPubMedPubMed Central Google Scholar
Lawson, S. N., Crepps, B. A. & Perl, E. R. Relationship of substance P to afferent characteristics of dorsal root ganglion neurones in guinea-pig. J. Physiol.505, 177–191 (1997). CASPubMedPubMed Central Google Scholar
Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron20, 629–632 (1998). CASPubMed Google Scholar
Taylor, A. M., Peleshok, J. C. & Ribeiro-da-Silva, A. Distribution of P2X(3)-immunoreactive fibers in hairy and glabrous skin of the rat. J. Comp. Neurol.514, 555–566 (2009). CASPubMed Google Scholar
Bennett, D. L., Dmietrieva, N., Priestley, J. V., Clary, D. & McMahon, S. B. trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat. Neurosci. Lett.206, 33–36 (1996). CASPubMed Google Scholar
Perry, M. J. & Lawson, S. N. Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience85, 293–310 (1998). CASPubMed Google Scholar
Plenderleith, M. B. & Snow, P. J. The plant lectin Bandeiraea simplicifolia I-B4 identifies a subpopulation of small diameter primary sensory neurones which innervate the skin in the rat. Neurosci. Lett.159, 17–20 (1993). CASPubMed Google Scholar
Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron45, 17–25 (2005). CASPubMed Google Scholar
Cavanaugh, D. J. et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl Acad. Sci. USA106, 9075–9080 (2009). CASPubMedPubMed Central Google Scholar
Lynn, B. Effect of neonatal treatment with capsaicin on the numbers and properties of cutaneous afferent units from the hairy skin of the rat. Brain Res.322, 255–260 (1984). CASPubMed Google Scholar
Michael, G. J. et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J. Neurosci.17, 8476–8490 (1997). CASPubMedPubMed Central Google Scholar
Rethelyi, M., Light, A. R. & Perl, E. R. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J. Comp. Neurol.207, 381–393 (1982). CASPubMed Google Scholar
Ribeiro-da-Silva, A. & Coimbra, A. Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord. J. Comp. Neurol.209, 176–186 (1982). CASPubMed Google Scholar
Ribeiro-da-Silva, A., Tagari, P. & Cuello, A. C. Morphological characterization of substance P-like immunoreactive glomeruli in the superficial dorsal horn of the rat spinal cord and trigeminal subnucleus caudalis: a quantitative study. J. Comp. Neurol.281, 497–415 (1989). CASPubMed Google Scholar
Zoli, M., Jansson, A., Sykova, E., Agnati, L. F. & Fuxe, K. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci.20, 142–150 (1999). CASPubMed Google Scholar
Antal, M., Petko, M., Polgar, E., Heizmann, C. W. & Storm-Mathisen, J. Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience73, 509–518 (1996). CASPubMed Google Scholar
Kato, G. et al. Direct GABAergic and glycinergic inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patch-clamp analysis in rats. J. Neurosci.26, 1787–1794 (2006). CASPubMedPubMed Central Google Scholar
Polgár, E. et al. Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain104, 229–239 (2003). PubMed Google Scholar
Todd, A. J. & Sullivan, A. C. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J. Comp. Neurol.296, 496–505 (1990). CASPubMed Google Scholar
Keller, A. F., Coull, J. A., Chery, N., Poisbeau, P. & De Koninck, Y. Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J. Neurosci.21, 7871–7880 (2001). CASPubMedPubMed Central Google Scholar
Yasaka, T. et al. Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J. Physiol.581, 603–618 (2007). PubMedPubMed Central Google Scholar
Todd, A. J. et al. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur. J. Neurosci.17, 13–27 (2003). CASPubMed Google Scholar
Maxwell, D. J., Belle, M. D., Cheunsuang, O., Stewart, A. & Morris, R. Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. J. Physiol.584, 521–533 (2007). CASPubMedPubMed Central Google Scholar
Yasaka, T., Tiong, S. Y. X., Hughes, D. I., Riddell, J. S. & Todd, A. J. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain151, 475–488 (2010). A recent study that compared physiological and morphological properties of lamina II interneurons with neurotransmitter phenotype and showed that A-type potassium current firing patterns were largely restricted to glutamatergic cells. PubMedPubMed Central Google Scholar
Graham, B. A., Brichta, A. M. & Callister, R. J. Moving from an averaged to specific view of spinal cord pain processing circuits. J. Neurophysiol.98, 1057–1063 (2007). A review that highlights the heterogeneity of neurons in the superficial dorsal horn and emphasizes the need to identify functional populations. CASPubMed Google Scholar
Ruscheweyh, R. & Sandkuhler, J. Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J. Physiol.541, 231–244 (2002). CASPubMedPubMed Central Google Scholar
Hu, H. J. et al. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron50, 89–100 (2006). This study showed that Kv4.2, which is a downstream target for phosphorylation by extracellular signal-regulated kinases, mediates the majority of the A-type potassium currents in the dorsal horn and plays a crucial role in pain plasticity. CASPubMed Google Scholar
Huang, H. Y. et al. Expression of A-type K channel α subunits Kv 4.2 and Kv 4.3 in rat spinal lamina II excitatory interneurons and colocalization with pain-modulating molecules. Eur. J. Neurosci.22, 1149–1157 (2005). PubMed Google Scholar
Grudt, T. J. & Perl, E. R. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol.540, 189–207 (2002). This combined physiological and morphological study developed the most widely used classification scheme for superficial dorsal horn neurons. CASPubMedPubMed Central Google Scholar
Hantman, A. W., van den Pol., A. N. & Perl, E. R. Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression. J. Neurosci.24, 836–842 (2004). CASPubMedPubMed Central Google Scholar
Lu, Y. & Perl, E. R. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J. Neurosci.23, 8752–8758 (2003). CASPubMedPubMed Central Google Scholar
Lu, Y. & Perl, E. R. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J. Neurosci.25, 3900–3907 (2005). One of a series of papers describing elegant studies in which paired recordings were used to investigate synaptic linkages in the superficial dorsal horn. In this case, a synaptic connection between glutamatergic vertical cells and NK1R-expressing lamina I projection neurons was revealed. CASPubMedPubMed Central Google Scholar
Todd, A. J. & McKenzie, J. GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience31, 799–806 (1989). CASPubMed Google Scholar
Albuquerque, C., Lee, C. J., Jackson, A. C. & MacDermott, A. B. Subpopulations of GABAergic and non-GABAergic rat dorsal horn neurons express Ca2+-permeable AMPA receptors. Eur. J. Neurosci.11, 2758–2766 (1999). CASPubMed Google Scholar
Zheng, J., Lu, Y. & Perl, E. R. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J. Physiol.588, 2065–2075 (2010). CASPubMedPubMed Central Google Scholar
Hantman, A. W. & Perl, E. R. Molecular and genetic features of a labeled class of spinal substantia gelatinosa neurons in a transgenic mouse. J. Comp. Neurol.492, 90–100 (2005). CASPubMed Google Scholar
Han, Z. S., Zhang, E. T. & Craig, A. D. Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nature Neurosci.1, 218–225 (1998). CASPubMed Google Scholar
Lima, D. & Coimbra, A. A Golgi study of the neuronal population of the marginal zone (lamina I) of the rat spinal cord. J. Comp. Neurol.244, 53–71 (1986). CASPubMed Google Scholar
Prescott, S. A. & De Koninck, Y. Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J. Physiol.539, 817–836 (2002). CASPubMedPubMed Central Google Scholar
Al Ghamdi, K. S., Polgar, E. & Todd, A. J. Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn. Neuroscience164, 1794–1804 (2009). CASPubMed Google Scholar
Antal, M. et al. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. J. Comp. Neurol.314, 114–124 (1991). CASPubMed Google Scholar
Todd, A. J. & Spike, R. C. The localization of classical transmitters and neuropeptides within neurons in laminae I–III of the mammalian spinal dorsal horn. Prog. Neurobiol.41, 609–645 (1993). CASPubMed Google Scholar
Polgár, E., Furuta, T., Kaneko, T. & Todd, A. Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience139, 687–697 (2006). PubMed Google Scholar
Laing, I., Todd, A. J., Heizmann, C. W. & Schmidt, H. H. Subpopulations of GABAergic neurons in laminae I–III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience61, 123–132 (1994). CASPubMed Google Scholar
Mori, M., Kose, A., Tsujino, T. & Tanaka, C. Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J. Comp. Neurol.299, 167–177 (1990). CASPubMed Google Scholar
Polgár, E., Fowler, J. H., McGill, M. M. & Todd, A. J. The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res.833, 71–80 (1999). PubMed Google Scholar
Spike, R. C., Todd, A. J. & Johnston, H. M. Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J. Comp. Neurol.335, 320–333 (1993). CASPubMed Google Scholar
Burstein, R., Dado, R. J. & Giesler, G. J., Jr The cells of origin of the spinothalamic tract of the rat: a quantitative reexamination. Brain Res.511, 329–337 (1990). CASPubMed Google Scholar
Hylden, J. L., Anton, F. & Nahin, R. L. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience28, 27–37 (1989). CASPubMed Google Scholar
Lima, D. & Coimbra, A. The spinothalamic system of the rat: structural types of retrogradely labelled neurons in the marginal zone (lamina I). Neuroscience27, 215–230 (1988). CASPubMed Google Scholar
Lima, D., Mendes-Ribeiro, J. A. & Coimbra, A. The spino-latero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved. Neuroscience45, 137–152 (1991). CASPubMed Google Scholar
Spike, R. C., Puskar, Z., Andrew, D. & Todd, A. J. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci.18, 2433–2448 (2003). CASPubMed Google Scholar
Todd, A. J., McGill, M. M. & Shehab, S. A. Neurokinin 1 receptor expression by neurons in laminae, I., III and IV of the rat spinal dorsal horn that project to the brainstem. Eur. J. Neurosci.12, 689–700 (2000). CASPubMed Google Scholar
Almarestani, L., Waters, S. M., Krause, J. E., Bennett, G. J. & Ribeiro-da-Silva, A. Morphological characterization of spinal cord dorsal horn lamina I neurons projecting to the parabrachial nucleus in the rat. J. Comp. Neurol.504, 287–297 (2007). CASPubMed Google Scholar
Bernard, J. F., Dallel, R., Raboisson, P., Villanueva, L. & Le Bars, D. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J. Comp. Neurol.353, 480–505 (1995). CASPubMed Google Scholar
Feil, K. & Herbert, H. Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kolliker-Fuse nuclei. J. Comp. Neurol.353, 506–528 (1995). CASPubMed Google Scholar
Gauriau, C. & Bernard, J. F. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J. Comp. Neurol.468, 24–56 (2004). PubMed Google Scholar
Slugg, R. M. & Light, A. R. Spinal cord and trigeminal projections to the pontine parabrachial region in the rat as demonstrated with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol.339, 49–61 (1994). CASPubMed Google Scholar
Al-Khater, K. M. & Todd, A. J. Collateral projections of neurons in laminae, I., III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J. Comp. Neurol.515, 629–646 (2009). PubMedPubMed Central Google Scholar
Al-Khater, K. M., Kerr, R. & Todd, A. J. A quantitative study of spinothalamic neurons in laminae, I, III, and IV in lumbar and cervical segments of the rat spinal cord. J. Comp. Neurol.511, 1–18 (2008). PubMedPubMed Central Google Scholar
Polgár, E., Wright, L. L. & Todd, A. J. A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat. Brain Res.1308, 58–67 (2010). PubMedPubMed Central Google Scholar
Zhang, E. T. & Craig, A. D. Morphology and distribution of spinothalamic lamina I neurons in the monkey. J. Neurosci.17, 3274–3284 (1997). CASPubMedPubMed Central Google Scholar
Zhang, E. T., Han, Z. S. & Craig, A. D. Morphological classes of spinothalamic lamina I neurons in the cat. J. Comp. Neurol.367, 537–549 (1996). CASPubMed Google Scholar
Andrew, D. Sensitization of lamina I spinoparabrachial neurons parallels heat hyperalgesia in the chronic constriction injury model of neuropathic pain. J. Physiol.587, 2005–2017 (2009). CASPubMedPubMed Central Google Scholar
Bester, H., Chapman, V., Besson, J. M. & Bernard, J. F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J. Neurophysiol.83, 2239–2259 (2000). CASPubMed Google Scholar
Ruscheweyh, R., Ikeda, H., Heinke, B. & Sandkuhler, J. Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J. Physiol.555, 527–543 (2004). CASPubMed Google Scholar
Zhang, X. & Giesler, G. J. Jr. Response characterstics of spinothalamic tract neurons that project to the posterior thalamus in rats. J. Neurophysiol.93, 2552–2564 (2005). PubMed Google Scholar
Willis, W. D., Trevino, D. L., Coulter, J. D. & Maunz, R. A. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol.37, 358–372 (1974). CASPubMed Google Scholar
Salter, M. W. & Henry, J. L. Responses of functionally identified neurones in the dorsal horn of the cat spinal cord to substance P, neurokinin A and physalaemin. Neuroscience43, 601–610 (1991). CASPubMed Google Scholar
Mantyh, P. W. et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science278, 275–279 (1997). By selectively ablating NK1R-expressing dorsal horn neuronsin vivo, the authors demonstrated that these cells play a pivotal part in the development of hyperalgesia. CASPubMed Google Scholar
Nichols, M. L. et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science286, 1558–1561 (1999). CASPubMed Google Scholar
Littlewood, N. K., Todd, A. J., Spike, R. C., Watt, C. & Shehab, S. A. The types of neuron in spinal dorsal horn which possess neurokinin-1 receptors. Neuroscience66, 597–608 (1995). CASPubMed Google Scholar
Yu, X. H. et al. NK-1 receptor immunoreactivity in distinct morphological types of lamina I neurons of the primate spinal cord. J. Neurosci.19, 3545–3555 (1999). CASPubMedPubMed Central Google Scholar
Todd, A. J. et al. Projection neurons in lamina I of rat spinal cord with the neurokinin 1 receptor are selectively innervated by substance P-containing afferents and respond to noxious stimulation. J. Neurosci.22, 4103–4113 (2002). This article demonstrated a strong monosynaptic input from substance P-containing (nociceptive) primary afferents to lamina I projection neurons that express the NK1R. CASPubMedPubMed Central Google Scholar
Polgár, E., Al Ghamdi, K. S. & Todd, A. J. Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of excitatory synaptic input. Neuroscience167, 1192–1204 (2010). This recent report identifies two populations of NK1R-expressing lamina I projection neurons that differ in their AMPAR subunit expression and in the density of excitatory synapses that they receive. It also provides evidence that GluA-containing receptors in the superficial dorsal horn are largely restricted to projection neurons. PubMed Google Scholar
Polgár, E., Al-Khater, K. M., Shehab, S., Watanabe, M. & Todd, A. J. Large projection neurons in lamina I of the rat spinal cord that lack the neurokinin 1 receptor are densely innervated by VGLUT2-containing axons and possess GluR4-containing AMPA receptors. J. Neurosci.28, 13150–13160 (2008). PubMedPubMed Central Google Scholar
Puskár, Z., Polgár, E. & Todd, A. J. A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience102, 167–176 (2001). PubMed Google Scholar
Naim, M., Spike, R. C., Watt, C., Shehab, S. A. & Todd, A. J. Cells in laminae III and IV of the rat spinal cord that possess the neurokinin-1 receptor and have dorsally directed dendrites receive a major synaptic input from tachykinin-containing primary afferents. J. Neurosci.17, 5536–5548 (1997). CASPubMedPubMed Central Google Scholar
Polgár, E., Campbell, A. D., MacIntyre, L. M., Watanabe, M. & Todd, A. J. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation. Mol. Pain3, 4 (2007). PubMedPubMed Central Google Scholar
Naim, M. M., Shehab, S. A. & Todd, A. J. Cells in laminae III and IV of the rat spinal cord which possess the neurokinin-1 receptor receive monosynaptic input from myelinated primary afferents. Eur. J. Neurosci.10, 3012–3019 (1998). CASPubMed Google Scholar
Sakamoto, H., Spike, R. C. & Todd, A. J. Neurons in laminae III and IV of the rat spinal cord with the neurokinin-1 receptor receive few contacts from unmyelinated primary afferents which do not contain substance P. Neuroscience94, 903–908 (1999). CASPubMed Google Scholar
Polgár, E., Shehab, S. A., Watt, C. & Todd, A. J. GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J. Neurosci.19, 2637–2646 (1999). PubMedPubMed Central Google Scholar
Uta, D. et al. TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur. J. Neurosci.31, 1960–1973 (2010). PubMedPubMed Central Google Scholar
Neumann, S., Braz, J. M., Skinner, K., Llewellyn-Smith, I. J. & Basbaum, A. I. Innocuous, not noxious, input activates PKCγ interneurons of the spinal dorsal horn via myelinated afferent fibers. J. Neurosci.28, 7936–7944 (2008). CASPubMedPubMed Central Google Scholar
Hughes, D. I., Scott, D. T., Todd, A. J. & Riddell, J. S. Lack of evidence for sprouting of Abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J. Neurosci.23, 9491–9499 (2003). CASPubMedPubMed Central Google Scholar
Santos, S. F., Rebelo, S., Derkach, V. A. & Safronov, B. V. Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J. Physiol.581, 241–254 (2007). CASPubMedPubMed Central Google Scholar
Hughes, D. I. et al. P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proc. Natl Acad. Sci. USA102, 9038–9043 (2005). CASPubMedPubMed Central Google Scholar
Todd, A. J. GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur. J. Neurosci.8, 2492–2498 (1996). CASPubMed Google Scholar
Watson, A. H., Hughes, D. I. & Bazzaz, A. A. Synaptic relationships between hair follicle afferents and neurones expressing GABA and glycine-like immunoreactivity in the spinal cord of the rat. J. Comp. Neurol.452, 367–380 (2002). CASPubMed Google Scholar
Mantyh, P. W. et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science268, 1629–1632 (1995). CASPubMed Google Scholar
Ding, Y. Q. et al. Two major distinct subpopulations of neurokinin-3 receptor-expressing neurons in the superficial dorsal horn of the rat spinal cord. Eur. J. Neurosci.16, 551–556 (2002). PubMed Google Scholar
Seybold, V. S. et al. Relationship of NK3 receptor-immunoreactivity to subpopulations of neurons in rat spinal cord. J. Comp. Neurol.381, 439–448 (1997). CASPubMed Google Scholar
Todd, A. J., Spike, R. C. & Polgar, E. A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience85, 459–473 (1998). CASPubMed Google Scholar
Kemp, T., Spike, R. C., Watt, C. & Todd, A. J. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience75, 1231–1238 (1996). CASPubMed Google Scholar
Brumovsky, P. et al. The neuropeptide tyrosine Y1R is expressed in interneurons and projection neurons in the dorsal horn and area X of the rat spinal cord. Neuroscience138, 1361–1376 (2006). CASPubMed Google Scholar
Zhang, X., Tong, Y. G., Bao, L. & Hokfelt, T. The neuropeptide Y Y1 receptor is a somatic receptor on dorsal root ganglion neurons and a postsynaptic receptor on somatostatin dorsal horn neurons. Eur. J. Neurosci.11, 2211–2225 (1999). CASPubMed Google Scholar
Abe, K. et al. Responses to 5-HT in morphologically identified neurons in the rat substantia gelatinosa in vitro. Neuroscience159, 316–324 (2009). CASPubMed Google Scholar
Lu, Y. & Perl, E. R. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J. Physiol.582, 127–136 (2007). CASPubMedPubMed Central Google Scholar
Gassner, M., Ruscheweyh, R. & Sandkuhler, J. Direct excitation of spinal GABAergic interneurons by noradrenaline. Pain145, 204–210 (2009). CASPubMed Google Scholar
Sandkuhler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev.89, 707–758 (2009). This review provides a detailed and systematic account of the mechanisms that have been proposed to underlie abnormal pain states. PubMed Google Scholar
Torsney, C. & MacDermott, A. B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci.26, 1833–1843 (2006). CASPubMedPubMed Central Google Scholar
Moore, K. A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci.22, 6724–6731 (2002). CASPubMedPubMed Central Google Scholar
Coull, J. A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature424, 938–942 (2003). CASPubMed Google Scholar
Eaton, M. J., Plunkett, J. A., Karmally, S., Martinez, M. A. & Montanez, K. Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J. Chem. Neuroanat.16, 57–72 (1998). CASPubMed Google Scholar
Ibuki, T., Hama, A. T., Wang, X. T., Pappas, G. D. & Sagen, J. Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience76, 845–858 (1997). CASPubMed Google Scholar
Azkue, J. J., Zimmermann, M., Hsieh, T. F. & Herdegen, T. Peripheral nerve insult induces NMDA receptor-mediated, delayed degeneration in spinal neurons. Eur. J. Neurosci.10, 2204–2206 (1998). CASPubMed Google Scholar
Scholz, J. et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J. Neurosci.25, 7317–7323 (2005). CASPubMedPubMed Central Google Scholar
Whiteside, G. T. & Munglani, R. Cell death in the superficial dorsal horn in a model of neuropathic pain. J. Neurosci. Res.64, 168–173 (2001). CASPubMed Google Scholar
Polgár, E., Hughes, D. I., Arham, A. Z. & Todd, A. J. Loss of neurons from laminas I–III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J. Neurosci.25, 6658–6666 (2005). PubMedPubMed Central Google Scholar
Polgár, E., Gray, S., Riddell, J. S. & Todd, A. J. Lack of evidence for significant neuronal loss in laminae I–III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain111, 144–150 (2004). PubMed Google Scholar
Polgár, E. & Todd, A. J. Tactile allodynia can occur in the spared nerve injury model in the rat without selective loss of GABA or GABA(A) receptors from synapses in laminae I–II of the ipsilateral spinal dorsal horn. Neuroscience156, 193–202 (2008). PubMed Google Scholar
Hwang, J. H. & Yaksh, T. L. The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain70, 15–22 (1997). CASPubMed Google Scholar
Malan, T. P., Mata, H. P. & Porreca, F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology96, 1161–1167 (2002). CASPubMed Google Scholar
Schoffnegger, D., Heinke, B., Sommer, C. & Sandkuhler, J. Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury. J. Physiol.577, 869–878 (2006). CASPubMedPubMed Central Google Scholar
Bailey, A. L. & Ribeiro-da-Silva, A. Transient loss of terminals from non-peptidergic nociceptive fibers in the substantia gelatinosa of spinal cord following chronic constriction injury of the sciatic nerve. Neuroscience138, 675–690 (2006). CASPubMed Google Scholar
Castro-Lopes, J. M., Coimbra, A., Grant, G. & Arvidsson, J. Ultrastructural changes of the central scalloped (C1) primary afferent endings of synaptic glomeruli in the substantia gelatinosa Rolandi of the rat after peripheral neurotomy. J. Neurocytol19, 329–337 (1990). CASPubMed Google Scholar
Ikeda, H., Heinke, B., Ruscheweyh, R. & Sandkuhler, J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science299, 1237–1240 (2003). CASPubMed Google Scholar
Ikeda, H. et al. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science312, 1659–1662 (2006). The second of two studies from these authors that demonstrates a form of LTP in lamina I projection neurons — in this case, induced by activation of C fibres at a rate that occurs in physiological conditions. CASPubMed Google Scholar
Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron40, 361–379 (2003). CASPubMed Google Scholar
Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neurosci.6, 136–143 (2003). CASPubMed Google Scholar
Nagy, G. G. et al. Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method. J. Neurosci.24, 5766–5777 (2004). CASPubMedPubMed Central Google Scholar
Larsson, M. & Broman, J. Translocation of GluR1-containing AMPA receptors to a spinal nociceptive synapse during acute noxious stimulation. J. Neurosci.28, 7084–7090 (2008). CASPubMedPubMed Central Google Scholar
Randic, M., Jiang, M. C. & Cerne, R. Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J. Neurosci.13, 5228–5241 (1993). CASPubMedPubMed Central Google Scholar
Ji, R. R., Baba, H., Brenner, G. J. & Woolf, C. J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature Neurosci.2, 1114–1119 (1999). CASPubMed Google Scholar
Woolf, C. J., Shortland, P. & Coggeshall, R. E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature355, 75–78 (1992). CASPubMed Google Scholar
Tong, Y. G. et al. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting. J. Comp. Neurol.404, 143–158 (1999). CASPubMed Google Scholar
Shehab, S. A., Spike, R. C. & Todd, A. J. Evidence against cholera toxin B subunit as a reliable tracer for sprouting of primary afferents following peripheral nerve injury. Brain Res.964, 218–227 (2003). CASPubMed Google Scholar
Woodbury, C. J., Kullmann, F. A., McIlwrath, S. L. & Koerber, H. R. Identity of myelinated cutaneous sensory neurons projecting to nocireceptive laminae following nerve injury in adult mice. J. Comp. Neurol.508, 500–509 (2008). PubMedPubMed Central Google Scholar
Neumann, S., Doubell, T. P., Leslie, T. & Woolf, C. J. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature384, 360–364 (1996). CASPubMed Google Scholar
Noguchi, K., Dubner, R., De Leon, M., Senba, E. & Ruda, M. A. Axotomy induces preprotachykinin gene expression in a subpopulation of dorsal root ganglion neurons. J. Neurosci. Res.37, 596–603 (1994). CASPubMed Google Scholar
Malcangio, M., Ramer, M. S., Jones, M. G. & McMahon, S. B. Abnormal substance P release from the spinal cord following injury to primary sensory neurons. Eur. J. Neurosci.12, 397–399 (2000). CASPubMed Google Scholar
Hughes, D. I., Scott, D. T., Riddell, J. S. & Todd, A. J. Upregulation of substance P in low-threshold myelinated afferents is not required for tactile allodynia in the chronic constriction injury and spinal nerve ligation models. J. Neurosci.27, 2035–2044 (2007). CASPubMedPubMed Central Google Scholar
Baba, H., Doubell, T. P. & Woolf, C. J. Peripheral inflammation facilitates Abeta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord. J. Neurosci.19, 859–867 (1999). CASPubMedPubMed Central Google Scholar
Schoffnegger, D., Ruscheweyh, R. & Sandkuhler, J. Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain135, 300–310 (2008). CASPubMed Google Scholar
Okamoto, M. et al. Functional reorganization of sensory pathways in the rat spinal dorsal horn following peripheral nerve injury. J. Physiol.532, 241–250 (2001). CASPubMedPubMed Central Google Scholar
Kohno, T., Moore, K. A., Baba, H. & Woolf, C. J. Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. J. Physiol.548, 131–138 (2003). CASPubMedPubMed Central Google Scholar
Schneider, S. P. Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro. J. Neurophysiol.68, 1746–1759 (1992). CASPubMed Google Scholar
Lima, D., Albino-Teixeira, A. & Tavares, I. The caudal medullary ventrolateral reticular formation in nociceptive-cardiovascular integration. An experimental study in the rat. Exp. Physiol.87, 267–274 (2002). PubMed Google Scholar
Boscan, P., Pickering, A. E. & Paton, J. F. The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Exp. Physiol.87, 259–266 (2002). PubMed Google Scholar
Gauriau, C. & Bernard, J. F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol.87, 251–258 (2002). PubMed Google Scholar
Heinricher, M. M., Tavares, I., Leith, J. L. & Lumb, B. M. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res. Rev.60, 214–225 (2009). CASPubMed Google Scholar
Gauriau, C. & Bernard, J. F. Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J. Neurosci.24, 752–761 (2004). CASPubMedPubMed Central Google Scholar
Wall, P. D. et al. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain7, 103–111 (1979). CASPubMed Google Scholar
Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain87, 149–158 (2000). CASPubMed Google Scholar
Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain33, 87–107 (1988). CASPubMed Google Scholar
Kim, S. H. & Chung, J. M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain50, 355–363 (1992). CAS Google Scholar
Brown, A. G., Fyffe, R. E., Rose, P. K. & Snow, P. J. Spinal cord collaterals from axons of type II slowly adapting units in the cat. J. Physiol.316, 469–480 (1981). CASPubMedPubMed Central Google Scholar
Light, A. R. & Perl, E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol.186, 133–150 (1979). CASPubMed Google Scholar
Shortland, P., Woolf, C. J. & Fitzgerald, M. Morphology and somatotopic organization of the central terminals of hindlimb hair follicle afferents in the rat lumbar spinal cord. J. Comp. Neurol.289, 416–433 (1989). CASPubMed Google Scholar
Lorenzo, L. E., Ramien, M., St. Louis, M., De Koninck, Y. & Ribeiro-da-Silva, A. Postnatal changes in the Rexed lamination and markers of nociceptive afferents in the superficial dorsal horn of the rat. J. Comp. Neurol.508, 592–604 (2008). PubMed Google Scholar
Todd, A. J. & Koerber, H. R. in Wall and Melzack's Textbook of Pain 5th Edition (Eds McMahon, S. & Koltzenburg, M.) 73–90 (Elsevier, Edinburgh, 2005). Google Scholar
Todd, A. J. in Handbook of Clinical Neurology 3rd Series, Pain. (Eds Cervero, F. and Jensen, T. S.) 61–76 (Elsevier, Edinburgh, 2006). Google Scholar
Todd, A. J. in Current Topics in Pain: 12th World Congress on Pain (Ed. Castro-Lopes, J.) 25–51 (IASP Press, Seattle, 2009). Google Scholar