NaV1.9: a sodium channel linked to human pain (original) (raw)
Catterall, W. A., Goldin, A. L. & Waxman, S. G. International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol. Rev.57, 397–409 (2005). ArticleCAS Google Scholar
Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci.14, 49–62 (2013). ArticleCAS Google Scholar
Faber, C. G. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl Acad. Sci. USA109, 19444–19449 (2012). ArticleCAS Google Scholar
Huang, J. et al. Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J. Neurosci.33, 14087–14097 (2013). ArticleCAS Google Scholar
Han, C. et al. The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J. Neurol. Neurosurg. Psychiatry85, 499–505 (2014). Article Google Scholar
Huang, J. et al. Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain137, 1627–1642 (2014). Article Google Scholar
Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet.45, 1399–1404 (2013). ArticleCAS Google Scholar
Zhang, X. Y. et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet.93, 957–966 (2013). ArticleCAS Google Scholar
Han, C. et al. The domain II S4-S5 linker in Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. Neuromolecular Med.17, 158–169 (2015). ArticleCAS Google Scholar
Dib-Hajj, S. D., Tyrrell, L., Black, J. A. & Waxman, S. G. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc. Natl Acad. Sci. USA95, 8963–8968 (1998). ArticleCAS Google Scholar
Dib-Hajj, S. D. et al. Coding sequence, genomic organization, and conserved chromosomal localization of the mouse gene Scn11a encoding the sodium channel NaN. Genomics59, 309–318 (1999). ArticleCAS Google Scholar
Dib-Hajj, S., Black, J. A., Cummins, T. R. & Waxman, S. G. NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci.25, 253–259 (2002). ArticleCAS Google Scholar
Rugiero, F. et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J. Neurosci.23, 2715–2725 (2003). ArticleCAS Google Scholar
Fang, X. et al. The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J. Neurosci.22, 7425–7433 (2002). ArticleCAS Google Scholar
Fang, X. et al. Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J. Neurosci.26, 7281–7292 (2006). ArticleCAS Google Scholar
Amaya, F. et al. The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci.26, 12852–12860 (2006). ArticleCAS Google Scholar
Herzog, R. I., Cummins, T. R. & Waxman, S. G. Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol.86, 1351–1364 (2001). ArticleCAS Google Scholar
Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron47, 787–793 (2005). ArticleCAS Google Scholar
Stucky, C. L. & Lewin, G. R. Isolectin B4-positive and -negative nociceptors are functionally distinct. J. Neurosci.19, 6497–6505 (1999). ArticleCAS Google Scholar
Hockley, J. R. et al. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain155, 1962–1975 (2014). ArticleCAS Google Scholar
Santarelli, V. P., Eastwood, A. L., Dougherty, D. A., Horn, R. & Ahern, C. A. A cation-π interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block. J. Biol. Chem.282, 8044–8051 (2007). ArticleCAS Google Scholar
Cummins, T. R. et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci.19, RC43 (1999). ArticleCAS Google Scholar
Maruyama, H. et al. Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Nav1.9, in mouse dorsal root ganglion neurons. Pflugers Arch.449, 76–87 (2004). ArticleCAS Google Scholar
Coste, B., Osorio, N., Padilla, F., Crest, M. & Delmas, P. Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol. Cell Neurosci.26, 123–134 (2004). ArticleCAS Google Scholar
Scroggs, R. S. The distribution of low-threshold TTX-resistant Na+ currents in rat trigeminal ganglion cells. Neuroscience222, 205–214 (2012). ArticleCAS Google Scholar
Dib-Hajj, S. D. et al. Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett.462, 117–120 (1999). ArticleCAS Google Scholar
Priest, B. T. et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc. Natl Acad. Sci. USA102, 9382–9387 (2005). ArticleCAS Google Scholar
Ostman, J. A., Nassar, M. A., Wood, J. N. & Baker, M. D. GTP up-regulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9. J. Physiol.586, 1077–1087 (2007). Article Google Scholar
Baker, M. D., Chandra, S. Y., Ding, Y., Waxman, S. G. & Wood, J. N. GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J. Physiol.548, 373–382 (2003). ArticleCAS Google Scholar
Harty, T. P. et al. NaV1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J. Neurosci.26, 12566–12575 (2006). ArticleCAS Google Scholar
Vasylyev, D. V., Han, C., Zhao, P., Dib-Hajj, S. & Waxman, S. G. Dynamic-clamp analysis of wild-type hNaV1.7 and erythromelalgia mutant channel L858H. J. Neurophysiol.111, 1429–1443 (2014). ArticleCAS Google Scholar
Copel, C. et al. Activation of neurokinin 3 receptor increases Nav1.9 current in enteric neurons. J. Physiol.587, 1461–1479 (2009). ArticleCAS Google Scholar
Osorio, N., Korogod, S. & Delmas, P. Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia. J. Neurosci.34, 5233–5244 (2014). Article Google Scholar
Dib-Hajj, S. D., Cummins, T. R., Black, J. A. & Waxman, S. G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci.33, 325–347 (2010). ArticleCAS Google Scholar
Qiu, F., Jiang, Y., Zhang, H., Liu, Y. & Mi, W. Increased expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 within dorsal root ganglia in a rat model of bone cancer pain. Neurosci. Lett.512, 61–66 (2012). ArticleCAS Google Scholar
Petho, G. & Reeh, P. W. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev.92, 1699–1775 (2012). ArticleCAS Google Scholar
Rush, A. M. & Waxman, S. G. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res.1023, 264–271 (2004). ArticleCAS Google Scholar
Binshtok, A. M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci.28, 14062–14073 (2008). ArticleCAS Google Scholar
Maingret, F. et al. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J. Gen. Physiol.131, 211–225 (2008). ArticleCAS Google Scholar
Mogil, J. S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci.10, 283–294 (2009). ArticleCAS Google Scholar
Dib-Hajj, S. D. & Waxman, S. G. Translational pain research: lessons from genetics and genomics. Sci. Transl Med.6, 249sr244 (2014). Article Google Scholar
Black, J. A. & Waxman, S. G. Molecular identities of two tetrodotoxin-resistant sodium channels in corneal axons. Exp. Eye Res.75, 193–199 (2002). ArticleCAS Google Scholar
Padilla, F. et al. Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: Implication for intestinal reflex function and orofacial pain. Mol. Cell Neurosci.35, 138–152 (2007). ArticleCAS Google Scholar
Belmonte, C. & Gallar, J. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Invest. Ophthalmol. Vis. Sci.52, 3888–3892 (2011). Article Google Scholar
Rosenthal, P. & Borsook, D. The corneal pain system. Part I: the missing piece of the dry eye puzzle. Ocul. Surf.10, 2–14 (2012). Article Google Scholar
Dib-Hajj, S. D. et al. Transfection of rat or mouse neurons by biolistics or electroporation. Nat. Protoc.4, 1118–1126 (2009). ArticleCAS Google Scholar
Waxman, S. G. et al. Sodium channel genes in pain-related disorders: phenotype–genotype associations and recommendations for clinical use. Lancet Neurol.13, 1152–1160 (2014). ArticleCAS Google Scholar
Faber, C. G. et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol.71, 26–39 (2012). ArticleCAS Google Scholar
Han, C. et al. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain135, 2613–2628 (2012). Article Google Scholar
Rush, A. M. et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl Acad. Sci. USA103, 8245–8250 (2006). ArticleCAS Google Scholar
Shields, S. D. et al. NaV1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain153, 2017–2030 (2012). ArticleCAS Google Scholar
Waxman, S. G., Black, J. A., Kocsis, J. D. & Ritchie, J. M. Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve. Proc. Natl Acad. Sci. USA86, 1406–1410 (1989). ArticleCAS Google Scholar
Donnelly, D. F. Spontaneous action potential generation due to persistent sodium channel currents in simulated carotid body afferent fibers. J. Appl. Physiol.104, 1394–1401 (2008). Article Google Scholar
Stys, P. K., Waxman, S. G. & Ransom, B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+–Ca2+ exchanger. J. Neurosci.12, 430–439 (1992). ArticleCAS Google Scholar
Persson, A. K. et al. Neuropathy-associated NaV1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Ann. Neurol.73, 140–145 (2012). Article Google Scholar
Swadlow, H. A. & Waxman, S. G. Observations on impulse conduction along central axons. Proc. Natl Acad. Sci. USA72, 5156–5159 (1975). ArticleCAS Google Scholar
Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol.30, 715–720 (2012). ArticleCAS Google Scholar
Young, G. T. et al. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol. Ther.22, 1530–1543 (2014). ArticleCAS Google Scholar
Blanchard, J. W. et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat. Neurosci.18, 25–35 (2015). ArticleCAS Google Scholar
Wainger, B. J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci.18, 17–24 (2015). ArticleCAS Google Scholar
Baker, M. Gene editing at CRISPR speed. Nat. Biotechnol.32, 309–312 (2014). Article Google Scholar
McCormack, K. et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc. Natl Acad. Sci. USA110, E2724–E2732 (2013). ArticleCAS Google Scholar
Lee, J. H. et al. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell157, 1393–1404 (2014). ArticleCAS Google Scholar
Black, J. A., Vasylyev, D., Dib-Hajj, S. D. & Waxman, S. G. Nav1.9 expression inmagnocellular neurosecretory cells of supraoptic nucleus. Exp. Neurol.253, 174–179 (2014). ArticleCAS Google Scholar
Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell139, 267–284 (2009). ArticleCAS Google Scholar
Woolf, C. J. & Ma, Q. Nociceptors — noxious stimulus detectors. Neuron55, 353–364 (2007). ArticleCAS Google Scholar