Proliferation control in neural stem and progenitor cells (original) (raw)
Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell93, 1183–1193 (1998). This paper shows that cell division and cell size/growth are coordinated and that changes in cell division rates are offset by changes in cell size, ensuring constant overall organ size. CASPubMed Google Scholar
Lanet, E., Gould, A. P. & Maurange, C. Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep.3, 587–594 (2013). CASPubMedPubMed Central Google Scholar
Janssens, D. H. et al. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors. Development141, 1036–1046 (2014). CASPubMedPubMed Central Google Scholar
Gao, P. et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell159, 775–788 (2014). This paper provides the most detailed analysis of neuronal lineages in the developing mouse cortex. CASPubMedPubMed Central Google Scholar
Wang, Y. C. et al. Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Development141, 253–258 (2014). PubMedPubMed Central Google Scholar
Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron70, 687–702 (2011). CASPubMedPubMed Central Google Scholar
Homem, C. C. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development139, 4297–4310 (2012). CASPubMed Google Scholar
Chang, K. C., Wang, C. & Wang, H. Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in Drosophila neural stem cells. Bioessays34, 301–310 (2012). PubMed Google Scholar
Xie, Y. et al. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors. eLife3, e03596 (2014). PubMed Central Google Scholar
Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y. & Jan, Y. N. Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc. Natl Acad. Sci. USA108, 20615–20620 (2011). CASPubMedPubMed Central Google Scholar
Komori, H., Xiao, Q., Janssens, D. H., Dou, Y. & Lee, C. Y. Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead. eLife3, e03502 (2014). PubMed Central Google Scholar
Xiao, Q., Komori, H. & Lee, C. Y. klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development139, 2670–2680 (2012). CASPubMedPubMed Central Google Scholar
Bowman, S. K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell14, 535–546 (2008). CASPubMedPubMed Central Google Scholar
Wang, H. et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev.20, 3453–3463 (2006). CASPubMedPubMed Central Google Scholar
Almeida, M. S. & Bray, S. J. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech. Dev.122, 1282–1293 (2005). CASPubMed Google Scholar
Berger, C. et al. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep.2, 407–418 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zacharioudaki, E. & Magadi, S. S. & Delidakis, C. bHLH-O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation. Development139, 1258–1269 (2012). CASPubMed Google Scholar
San-Juán, B. P. & Baonza, A. The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. Dev. Biol.352, 70–82 (2011). PubMed Google Scholar
Song, Y. & Lu, B. Regulation of cell growth by Notch signaling and its differential requirement in normal versus tumor-forming stem cells in Drosophila. Genes Dev.25, 2644–2658 (2011). CASPubMedPubMed Central Google Scholar
Schweisguth, F. Notch signaling activity. Curr. Biol.14, R129–R138 (2004). CASPubMed Google Scholar
Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Cell Biol.14, 131–139 (2012). CASPubMed Google Scholar
Harris, R. E., Pargett, M., Sutcliffe, C., Umulis, D. & Ashe, H. L. Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling. Dev. Cell20, 72–83 (2011). CASPubMedPubMed Central Google Scholar
Marchetti, G., Reichardt, I., Knoblich, J. A. & Besse, F. The TRIM-NHL protein Brat promotes axon maintenance by repressing src64B expression. J. Neurosci.34, 13855–13864 (2014). PubMedPubMed Central Google Scholar
Weng, M., Golden, K. L. & Lee, C. Y. dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev. Cell18, 126–135 (2010). CASPubMedPubMed Central Google Scholar
Koe, C. T. et al. The Brm–HDAC3–Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. eLife3, e01906 (2014). PubMedPubMed Central Google Scholar
Eroglu, E. et al. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell156, 1259–1273 (2014). CASPubMed Google Scholar
Mori, T., Buffo, A. & Gotz, M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr. Top. Dev. Biol.69, 67–99 (2005). CASPubMed Google Scholar
Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell. Biol.6, 777–788 (2005). PubMed Google Scholar
Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci.7, 136–144 (2004). CASPubMed Google Scholar
Pontious, A., Kowalczyk, T., Englund, C. & Hevner, R. F. Role of intermediate progenitor cells in cerebral cortex development. Dev. Neurosci.30, 24–32 (2008). CASPubMed Google Scholar
Gal, J. S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci.26, 1045–1056 (2006). CASPubMedPubMed Central Google Scholar
Stancik, E. K., Navarro-Quiroga, I., Sellke, R. & Haydar, T. F. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J. Neurosci.30, 7028–7036 (2010). CASPubMedPubMed Central Google Scholar
Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature464, 554–561 (2010). This paper describes a novel type of progenitor in the outer SVZ of the developing human cortex — the oRG cell. CASPubMed Google Scholar
Reillo, I., de Juan Romero, C., García-Cabezas, M. A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex21, 1674–1694 (2011). This paper provides a detailed characterization of oRG cells in the developing ferret brain. PubMed Google Scholar
Kelava, I. et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb. Cortex22, 469–481 (2012). PubMed Google Scholar
Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron80, 442–457 (2013). CASPubMed Google Scholar
Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell82, 631–641 (1995). CASPubMed Google Scholar
Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron17, 43–53 (1996). CASPubMed Google Scholar
Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J.23, 2314–2324 (2004). CASPubMedPubMed Central Google Scholar
Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat. Cell Biol.8, 586–593 (2006). CASPubMed Google Scholar
Postiglione, M. P. et al. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron72, 269–284 (2011). CASPubMedPubMed Central Google Scholar
Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci.10, 1440–1448 (2007). CASPubMed Google Scholar
Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol.10, 93–101 (2008). CASPubMed Google Scholar
Yu, F. et al. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts. J. Cell Sci.116, 887–896 (2003). CASPubMed Google Scholar
Mora-Bermudez, F., Matsuzaki, F. & Huttner, W. B. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife3, e02875 (2014). PubMed Central Google Scholar
Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci.31, 3683–3695 (2011). CASPubMedPubMed Central Google Scholar
Bultje, R. S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron63, 189–202 (2009). CASPubMedPubMed Central Google Scholar
Conduit, P. T. & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol.20, 2187–2192 (2010). CASPubMed Google Scholar
Januschke, J., Llamazares, S., Reina, J. & Gonzalez, C. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun.2, 243 (2011). PubMed Google Scholar
Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature461, 947–955 (2009). This paper shows that centrosomes are asymmetrically segregated in neural progenitors of the developing mouse brain. CASPubMedPubMed Central Google Scholar
Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet.11, 331–344 (2010). CASPubMedPubMed Central Google Scholar
Paridaen, J. T., Wilsch-Brauninger, M. & Huttner, W. B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell155, 333–344 (2013). This paper demonstrates asymmetric inheritance of the primary cilium membrane during neurogenic RG divisions. CASPubMed Google Scholar
Insolera, R., Bazzi, H., Shao, W., Anderson, K. V. & Shi, S. H. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci.17, 1528–1535 (2014). CASPubMedPubMed Central Google Scholar
Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron69, 840–855 (2011). CASPubMed Google Scholar
Kawaguchi, D., Yoshimatsu, T., Hozumi, K. & Gotoh, Y. Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development135, 3849–3858 (2008). CASPubMed Google Scholar
Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron58, 519–531 (2008). CASPubMed Google Scholar
Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron74, 65–78 (2012). CASPubMedPubMed Central Google Scholar
Nelson, B. R., Hodge, R. D., Bedogni, F. & Hevner, R. F. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J. Neurosci.33, 9122–9139 (2013). CASPubMedPubMed Central Google Scholar
Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem.276, 30467–30474 (2001). CASPubMed Google Scholar
Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature449, 351–355 (2007). CASPubMed Google Scholar
Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron58, 52–64 (2008). This paper shows how oscillations in Notch signalling regulate the expression of proneural genes and regulate cell fate decisions. CASPubMed Google Scholar
Baek, J. H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development133, 2467–2476 (2006). CASPubMed Google Scholar
Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci.25, 6533–6538 (2005). CASPubMedPubMed Central Google Scholar
Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun.2, 154 (2011). PubMed Google Scholar
Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci.116, 4947–4955 (2003). CASPubMed Google Scholar
Pilaz, L. J. et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA106, 21924–21929 (2009). CASPubMedPubMed Central Google Scholar
Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell5, 320–331 (2009). CASPubMed Google Scholar
Takahashi, T., Nowakowski, R. S. & Caviness, V. S. J. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci.15, 6046–6057 (1995). CASPubMedPubMed Central Google Scholar
Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci.14, 823–838 (2013). PubMedPubMed Central Google Scholar
Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development125, 2149–2158 (1998). CASPubMed Google Scholar
Speder, P. & Brand, A. H. Gap junction proteins in the blood–brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev. Cell.30, 309–321 (2014). CASPubMedPubMed Central Google Scholar
Sousa-Nunes, R., Yee, L. L. & Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature471, 508–512 (2011). This paper shows thatD. melanogasterNSPCs in the embryo-to-larva transition exit from quiescence in response to larval feeding. Larval feeding is sensed by the fat body, which then stimulates the production of insulin-like peptides by glial cells that in turn activate the TOR pathway in neuroblasts, inducing neuroblast growth and proliferation. CASPubMedPubMed Central Google Scholar
Chell, J. M. & Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell143, 1161–1173 (2010). Along with reference 72, this paper shows that in response to nutrition a population of glial cells produces insulin-like peptides that are received by neuroblasts where they activate the TOR pathway, drive neuroblast growth and exit from quiescence. CASPubMedPubMed Central Google Scholar
Egger, B., Gold, K. S. & Brand, A. H. Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly5, 237–241 (2011). CASPubMed Google Scholar
Liu, J., Speder, P. & Brand, A. H. Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes. Metab.16, S16–S20 (2014). Google Scholar
Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron69, 893–905 (2011). CASPubMedPubMed Central Google Scholar
Popken, G. J. et al. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci.19, 2056–2068 (2004). PubMed Google Scholar
Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol.226, 34–44 (2000). CASPubMed Google Scholar
Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell106, 511–521 (2001). CASPubMed Google Scholar
Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev.12, 246–260 (1998). CASPubMedPubMed Central Google Scholar
Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature425, 624–628 (2003). CASPubMed Google Scholar
Grosskortenhaus, R., Robinson, K. J. & Doe, C. Q. Pdm and Castor specify late-born motor neuron identity in the NEUROBLAST7-1 lineage. Genes Dev.20, 2618–2627 (2006). CASPubMedPubMed Central Google Scholar
Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell133, 891–902 (2008). CASPubMed Google Scholar
Chai, P. C., Liu, Z., Chia, W. & Cai, Y. Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit. PLoS Biol.11, e1001494 (2013). CASPubMedPubMed Central Google Scholar
Homem, C. C. et al. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell158, 874–888 (2014). This paper shows that cell growth inD. melanogasterNSPCs is coupled with cell lifespan, with larger cells being longer-lived and proliferative. Cell growth and lifespan are dependent on the metabolic profile of these NSPCs, with growing, undifferentiated NSPCs relying on glycolysis and non-growing, differentiating NSPCs being more dependent on oxidative phosphorylation. CASPubMed Google Scholar
Siegrist, S. E., Haque, N. S., Chen, C. H., Hay, B. A. & Hariharan, I. K. Inactivation of both foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr. Biol.20, 643–648 (2010). CASPubMedPubMed Central Google Scholar
White, K. et al. Genetic control of programmed cell death in Drosophila. Science264, 667–683 (1994). Google Scholar
Bello, B. C., Hirth, F. & Gould, A. P. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron37, 209–219 (2003). CASPubMed Google Scholar
Arya, R., Sarkissian, T., Tan, Y. & White, K. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ.22, 1378–1387 (2015). CASPubMedPubMed Central Google Scholar
Cenci, C. & Gould, A. P. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development132, 3835–3845 (2005). CASPubMed Google Scholar
Bayraktar, O. A. & Doe, C. Q. Combinatorial temporal patterning in progenitors expands neural diversity. Nature498, 449–455 (2013). This paper shows thatD. melanogasterintermediate progenitor cells undergo a specific sequence of transcriptional profiles, which is required for the generation of different neuronal/glial progeny over time. CASPubMedPubMed Central Google Scholar
Fog, C. K., Galli, G. G. & Lund, A. H. PRDM proteins: important players in differentiation and disease. Bioessays34, 50–60 (2012). CASPubMed Google Scholar
Pinheiro, I. et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell150, 948–960 (2012). CASPubMed Google Scholar
Suzuki, T., Kaido, M., Takayama, R. & Sato, M. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol.380, 12–24 (2013). CASPubMed Google Scholar
Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature498, 456–462 (2013). This paper shows thatD. melanogasterOL medulla neuroblasts sequentially express a series of transcription factors that, together with Notch, generate a variety of neuronal progeny. CASPubMedPubMed Central Google Scholar
Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron17, 55–61 (1996). CASPubMed Google Scholar
Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development127, 2863–2872 (2000). CASPubMed Google Scholar
Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature455, 351–357 (2008). CASPubMed Google Scholar
Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci.9, 743–751 (2006). CASPubMed Google Scholar
Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell3, 519–532 (2008). CASPubMed Google Scholar
Franco, S. J. et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science337, 746–749 (2012). CASPubMedPubMed Central Google Scholar
Guo, C. et al. Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron80, 1167–1174 (2013). CASPubMed Google Scholar
Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron21, 1031–1044 (1998). PubMed Google Scholar
Quaggin, S. E., Heuvel, G. B., Golden, K., Bodmer, R. & Igarashi, P. Primary structure, neural-specific expression, and chromosomal localization of Cux-2, a second murine homeobox gene related to Drosophila cut. J. Biol. Chem.271, 22624–22634 (1996). CASPubMed Google Scholar
Naka, H., Nakamura, S., Shimazaki, T. & Okano, H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci.11, 1014–1023 (2008). CASPubMed Google Scholar
Alsio, J. M., Tarchini, B., Cayouette, M. & Livesey, F. J. Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc. Natl Acad. Sci. USA110, E716–E725 (2013). CASPubMedPubMed Central Google Scholar
Mattar, P., Ericson, J., Blackshaw, S. & Cayouette, M. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron85, 497–504 (2015). CASPubMedPubMed Central Google Scholar
Culican, S. M., Baumrind, N. L., Yamamoto, M. & Pearlman, A. L. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J. Neurosci.10, 684–692 (1990). CASPubMedPubMed Central Google Scholar
Rowitch, D. H. & Kriegstein, A. R. Developmental genetics of vertebrate glial-cell specification. Nature468, 214–222 (2010). CASPubMed Google Scholar
Fan, G. et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development132, 3345–3356 (2005). CASPubMed Google Scholar
Chambers, C. B. et al. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development128, 689–702 (2001). CASPubMed Google Scholar
Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell16, 245–255 (2009). CASPubMed Google Scholar
Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron63, 600–613 (2009). CASPubMed Google Scholar
Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron48, 253–265 (2005). CASPubMed Google Scholar
Homem, C. C., Reichardt, I., Berger, C., Lendl, T. & Knoblich, J. A. Long-term live cell imaging and automated 4D analysis of neuroblast lineages. PLoS ONE8, e79588 (2013). CASPubMedPubMed Central Google Scholar
Truman, J. W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol.125, 145–157 (1988). CASPubMed Google Scholar
Layalle, S., Arquier, N. & Leopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell15, 568–577 (2008). CASPubMed Google Scholar
Colombani, J., Andersen, D. S. & Leopold, P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science336, 582–585 (2012). CASPubMed Google Scholar
Garelli, A., Gontijo, A. M., Miguela, V., Caparros, E. & Dominguez, M. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science336, 579–582 (2012). CASPubMed Google Scholar
Frerman, F. E. & Goodman, S. I. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc. Natl Acad. Sci. USA82, 4517–4520 (1985). CASPubMedPubMed Central Google Scholar
Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature493, 226–230 (2013). This paper shows that mouse adult neurogenesis requiresde novolipogenesis, thus demonstrating that there is a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation. CASPubMed Google Scholar
McIntyre, R. E. et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet.8, e1003022 (2012). CASPubMedPubMed Central Google Scholar
Martin, C. A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet.46, 1283–1292 (2014). CASPubMedPubMed Central Google Scholar
Buchman, J. J. et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron66, 386–402 (2010). CASPubMed Google Scholar
Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA103, 10438–10443 (2006). CASPubMedPubMed Central Google Scholar
Rujano, M. A., Sanchez-Pulido, L., Pennetier, C., le Dez, G. & Basto, R. The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat. Cell Biol.15, 1294–1306 (2013). CASPubMed Google Scholar
Buchman, J. J., Durak, O. & Tsai, L. H. ASPM regulates Wnt signaling pathway activity in the developing brain. Genes Dev.25, 1909–1914 (2011). CASPubMedPubMed Central Google Scholar
Chen, J. F. et al. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat. Commun.5, 3885 (2014). CASPubMed Google Scholar
Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nat. Cell Biol.13, 1325–1334 (2011). CASPubMed Google Scholar
Varmark, H. et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol.17, 1735–1745 (2007). CASPubMed Google Scholar
Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature467, 714–718 (2010). CASPubMed Google Scholar
Giansanti, M. G., Gatti, M. & Bonaccorsi, S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development128, 1137–1145 (2001). CASPubMed Google Scholar
Gilmore, E. C. & Walsh, C. A. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip. Rev. Dev. Biol.2, 461–478 (2013). CASPubMed Google Scholar
Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000). CASPubMed Google Scholar
Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron44, 279–293 (2004). CASPubMed Google Scholar
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature501, 373–379 (2013). This paper describes cerebral organoids, an ESC-derived three-dimensional model of human brain development. CASPubMed Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the PTEN tumor suppressor gene in vivo. Science294, 2186–2189 (2001). CASPubMed Google Scholar
D'Gama, A. M. et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol.77, 720–725 (2015). CASPubMedPubMed Central Google Scholar
Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron74, 41–48 (2012). CASPubMedPubMed Central Google Scholar
Mirzaa, G. M. & Poduri, A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am. J. Med. Genet. C. Semin. Med. Genet.166, 156–172 (2014). CAS Google Scholar
Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nat. Genet.16, 333–334 (1997). CASPubMed Google Scholar
Mirzaa, G. M. et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat. Genet.46, 510–515 (2014). CASPubMedPubMed Central Google Scholar
Tsurusaki, Y. et al. Coffin–Siris syndrome is a SWI/SNF complex disorder. Clin. Genet.85, 548–554 (2014). CASPubMed Google Scholar
Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci.13, 690–699 (2010). This paper characterizes oRG cells in the human and ferret cortex, and demonstrates the role of integrin signalling in oRG cell expansion. CASPubMed Google Scholar
Wilkinson, R. & Wiedenheft, B. A. CRISPR method for genome engineering. F1000PrimeRep.6, 3 (2014). Google Scholar
Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA110, 20284–20289 (2013). CASPubMedPubMed Central Google Scholar
Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex12, 37–53 (2002). PubMed Google Scholar
Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci.14, 555–561 (2011). CASPubMedPubMed Central Google Scholar
Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell146, 18–36 (2011). CASPubMedPubMed Central Google Scholar
Lui, J. H. et al. Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex. Nature515, 264–268 (2014). CASPubMedPubMed Central Google Scholar
Hietakangas, V. & Cohen, S. M. Regulation of tissue growth through nutrient sensing. Annu. Rev. Genet.43, 389–410 (2009). CASPubMed Google Scholar
Gruenwald, P. Chronic fetal distress and placental insufficiency. Biol. Neonat.5, 215–265 (1963). CASPubMed Google Scholar
Cheng, L. Y. et al. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell146, 435–447 (2011). CASPubMed Google Scholar
Loren, C. E. et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells6, 531–544 (2001). CASPubMedPubMed Central Google Scholar
Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet.71, 136–142 (2002). CASPubMedPubMed Central Google Scholar
Lin, S. Y. & Elledge, S. J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell113, 881–889 (2003). CASPubMed Google Scholar
Brunk, K. et al. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J. Cell Sci.120, 3578–3588 (2007). CASPubMed Google Scholar
Rickmyre, J. L. et al. The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo. J. Cell Sci.120, 3565–3577 (2007). CASPubMed Google Scholar
Bilguvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature467, 207–210 (2010). CASPubMedPubMed Central Google Scholar
Nicholas, A. K. et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat. Genet.42, 1010–1014 (2010). CASPubMedPubMed Central Google Scholar
Yu, T. W. et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet.42, 1015–1020 (2010). CASPubMedPubMed Central Google Scholar
Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet.37, 353–355 (2005). CASPubMed Google Scholar
Guernsey, D. L. et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet.87, 40–51 (2010). CASPubMedPubMed Central Google Scholar
Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet.32, 316–320 (2002). CASPubMed Google Scholar
Kumar, A., Girimaji, S. C., Duvvari, M. R. & Blanton, S. H. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet.84, 286–290 (2009). CASPubMedPubMed Central Google Scholar
Stevens, N. R., Dobbelaere, J., Brunk, K., Franz, A. & Raff, J. W. Drosophila Ana2 is a conserved centriole duplication factor. J. Cell Biol.188, 313–323 (2010). CASPubMedPubMed Central Google Scholar
Hussain, M. S. et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet.90, 871–878 (2012). CASPubMedPubMed Central Google Scholar
Lin, Y. C. et al. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J.32, 1141–1154 (2013). CASPubMedPubMed Central Google Scholar
Sir, J. H. et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet.43, 1147–1153 (2011). CASPubMedPubMed Central Google Scholar