Emerging structure of the Nicotinic Acetylcholine receptors (original) (raw)
Langley, J. N. On the contraction of muscle chiefly in relation to the presence of receptive substances. Part 1. J. Physiol. (Lond.)36, 347–384 (1907). ArticleCAS Google Scholar
Katz, B. & Thesleff, S. A study of 'desensitization' produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.)138, 63–80 (1957). ArticleCAS Google Scholar
Kao, P. N. & Karlin, A. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. Biol. Chem.261, 8085–8088 (1986). CASPubMed Google Scholar
Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron15, 1231–1244 (1995). ArticleCASPubMed Google Scholar
Ortells, M. O. & Lunt, G. G. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci.18, 121–127 (1995). ArticleCASPubMed Google Scholar
Tsunoyama, K. & Gojobori, T. Evolution of nicotinic acetylcholine receptor subunits. Mol. Biol. Evol.15, 518–527 (1998). ArticleCASPubMed Google Scholar
Cully, D. F. et al. Cloning an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature371, 707–711 (1994). ArticleCASPubMed Google Scholar
Zheng, Y. et al. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J. Biol. Chem.277, 2000–2005 (2002). ArticleCASPubMed Google Scholar
Reynolds, J. A. & Karlin, A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry17, 2035–2038 (1978). ArticleCASPubMed Google Scholar
Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature321, 406–411 (1986). ArticleCASPubMed Google Scholar
Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P. & Lindstrom, J. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J. Biol. Chem.266, 11192–11198 (1991). CASPubMed Google Scholar
Cooper, E., Couturier, S. & Ballivet, M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature350, 235–238 (1991). ArticleCASPubMed Google Scholar
Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E. & Heinemann, S. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell79, 705–715 (1994). ArticleCASPubMed Google Scholar
Gotti, C. et al. Pharmacology and biophysical properties of α7 and α7–α8 α-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur. J. Neurosci.6, 1281–1291 (1994). ArticleCASPubMed Google Scholar
Vernallis, A. B., Conroy, W. G. & Berg, D. K. Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron10, 451–464 (1993). ArticleCASPubMed Google Scholar
Le Novere, N., Zoli, M. & Changeux, J. P. Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur. J. Neurosci.8, 2428–2439 (1996). ArticleCASPubMed Google Scholar
Ramirez-Latorre, J. et al. Functional contributions of α5 subunit to neuronal acetylcholine receptor channels. Nature380, 347–351 (1996). ArticleCASPubMed Google Scholar
Elgoyhen, A. B. et al. α10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl Acad. Sci. USA98, 3501–3506 (2001). ArticleCASPubMedPubMed Central Google Scholar
Karlin, A. et al. The arrangement of the subunits of the acetylcholine receptor of Torpedo californica. J. Biol. Chem.258, 6678–6681 (1983). CASPubMed Google Scholar
Stroud, R. M., McCarthy, M. P. & Shuster, M. Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistry29, 11009–11023 (1990). ArticleCASPubMed Google Scholar
Unwin, N. Nicotinic acetylcholine receptor at 9 Å resolution. J. Mol. Biol.229, 1101–1124 (1993). ArticleCASPubMed Google Scholar
Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J. Mol. Biol.288, 765–786 (1999). ArticleCASPubMed Google Scholar
Sakmann, B., Patlak, J. & Neher, E. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature286, 71–73 (1980). ArticleCASPubMed Google Scholar
Neubig, R. R., Boyd, N. D. & Cohen, J. B. Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry21, 3460–3467 (1982). ArticleCASPubMed Google Scholar
Heidmann, T., Bernhardt, J., Neumann, E. & Changeux, J. P. Rapid kinetics of agonist-binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes from Torpedo marmorata. Biochemistry22, 5452–5459 (1983). ArticleCASPubMed Google Scholar
Jackson, M. B. Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor. Proc. Natl Acad. Sci. USA86, 2199–2203 (1989). ArticleCASPubMedPubMed Central Google Scholar
Auerbach, A. A statistical analysis of acetylcholine receptor activation in Xenopus myocytes: stepwise versus concerted models of gating. J. Physiol. (Lond.)461, 339–378 (1993). ArticleCAS Google Scholar
Hess, G. Determination of the chemical mechanism of neurotransmitter receptor-mediated reaction by rapid chemical kinetic techniques. Biochemistry32, 989–1000 (1993). ArticleCASPubMed Google Scholar
Edelstein, S. J., Schaad, O., Henry, E., Bertrand, D. & Changeux, J. P. A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol. Cybern.75, 361–379 (1996). ArticleCASPubMed Google Scholar
Auerbach, A. & Akk, G. Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. J. Gen. Physiol.112, 181–197 (1998).A thorough single-channel analysis of the fast phase of desensitization finds that the receptor desensitizes most readily from the open state and, as first shown in reference2, returns to the resting state without opening. The authors propose an interesting model in which there are separate resting and desensitization gates that are alternately open and closed, the interaction of which determines the kinetics of desensitization and recovery. ArticleCASPubMedPubMed Central Google Scholar
Prince, R. J. & Sine, S. M. Acetylcholine and epibatidine binding to muscle acetylcholine receptors distinguish between concerted and uncoupled models. J. Biol. Chem.274, 19623–19629 (1999).The ACh-binding sites seem to switch independently between functional states, generating asymmetrical states, contrary to the MWC postulate of concerted transitions. ArticleCASPubMed Google Scholar
Reitstetter, R., Lukas, R. J. & Gruener, R. Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J. Pharmacol. Exp. Ther.289, 656–660 (1999). CASPubMed Google Scholar
Grosman, C. & Auerbach, A. The dissociation of acetylcholine from open nicotinic receptor channels. Proc. Natl Acad. Sci. USA98, 14102–14107 (2001).This is another searching analysis of receptor kinetics from Auerbach's laboratory, which expands the work of reference30. This one estimates the rate constants for the association and dissociation of agonist from the open state, and yields the theoretically expected result that the much higher affinity of agonist for the open state than for the resting state drives activation. ArticleCASPubMedPubMed Central Google Scholar
Jones, M. V. & Westbrook, G. L. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci.19, 96–101 (1996). ArticleCASPubMed Google Scholar
Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol.12, 88–118 (1965). ArticleCASPubMed Google Scholar
Changeux, J.-P., Thiery, J., Tung, Y. & Kittel, C. On the cooperativity of biological membranes. Proc. Natl Acad. Sci. USA57, 335–341 (1967). ArticleCASPubMedPubMed Central Google Scholar
Karlin, A. On the application of 'a plausible model' of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol.16, 306–320 (1967). ArticleCASPubMed Google Scholar
Kawai, H., Cao, L., Dunn, S. M., Dryden, W. F. & Raftery, M. A. Interaction of a semirigid agonist with Torpedo acetylcholine receptor. Biochemistry39, 3867–3876 (2000). ArticleCASPubMed Google Scholar
Krauss, M., Korr, D., Herrmann, A. & Hucho, F. Binding properties of agonists and antagonists to distinct allosteric states of the nicotinic acetylcholine receptor are incompatible with a concerted model. J. Biol. Chem.275, 30196–30201 (2000). ArticleCASPubMed Google Scholar
Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature411, 269–276 (2001).The structure of the snail AChBP is solved, illuminating 30 years of research on the ACh receptor and other Cys-loop receptors, and uncovering fascinating details that only a high-resolution structure can provide. ArticleCASPubMed Google Scholar
Smit, A. B. et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature411, 261–268 (2001).The discovery and properties of the snail AChBP are described, and evidence is presented that this protein, secreted by snail glia, has an unusual role in shaping neurotransmission by acetylcholine in snail synapses. ArticleCASPubMed Google Scholar
Ratnam, M. et al. Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry25, 2621–2632 (1986). ArticleCASPubMed Google Scholar
Le Novere, N., Corringer, P. J. & Changeux, J. P. Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation. Biophys. J.76, 2329–2345 (1999).This paper provides a paradigm for integrating the outputs of several prediction programs to obtain a consensus secondary structure for members of a protein family. Judging by the subsequently solved structure of the homologous AChBP, the prediction was remarkably good. ArticleCASPubMedPubMed Central Google Scholar
Karlin, A. Explorations of the nicotinic acetylcholine receptor. Harvey Lect.85, 71–107 (1991). CAS Google Scholar
Reiter, M. J., Cowburn, D. A., Prives, J. M. & Karlin, A. Affinity labeling of the acetylcholine receptor in the electroplax: electrophoretic separation in sodium dodecyl sulfate. Proc. Natl Acad. Sci. USA69, 1168–1172 (1972). ArticleCASPubMedPubMed Central Google Scholar
Kao, P. N. et al. Identification of the α subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem.259, 11662–11665 (1984). CASPubMed Google Scholar
Galzi, J.-L. et al. Identification of a novel amino acid α-tyrosine 93 within the cholinergic ligand-binding sites of the acetylcholine receptor by photolabeling. Additional evidence for a three-loop model of the cholinergic ligand-binding site. J. Biol. Chem.265, 10430–10437 (1990). CASPubMed Google Scholar
Middleton, R. E. & Cohen, J. B. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry30, 6987–6997 (1991). ArticleCASPubMed Google Scholar
Kurosaki, T. et al. Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett.214, 253–258 (1987). ArticleCASPubMed Google Scholar
Blount, P. & Merlie, J. P. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron3, 349–357 (1989). ArticleCASPubMed Google Scholar
Sine, S. M. & Claudio, T. γ- and δ-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J. Biol. Chem.266, 19369–19377 (1991). CASPubMed Google Scholar
Sine, S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc. Natl Acad. Sci. USA90, 9436–9440 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wang, D., Chiara, D. C., Xie, Y. & Cohen, J. B. Probing the structure of the nicotinic acetylcholine receptor with 4-benzoylbenzoylcholine, a novel photoaffinity competitive antagonist. J. Biol. Chem.275, 28666–28674 (2000). ArticleCASPubMed Google Scholar
Czajkowski, C. & Karlin, A. Structure of the nicotinic receptor acetylcholine-binding site. Identification of acidic residues in the δ subunit within 0.9 nm of the α subunit binding site disulfide. J. Biol. Chem.270, 3160–3164 (1995). ArticleCASPubMed Google Scholar
Pedersen, S. E. & Cohen, J. B. d-Tubocurarine binding sites are located at α–γ and α–δ subunit interfaces of the nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA87, 2785–2789 (1990). ArticleCASPubMedPubMed Central Google Scholar
Czajkowski, C. & Karlin, A. Agonist binding site of Torpedo electric tissue nicotinic acetylcholine receptor. A negatively charged region of the δ subunit within 0.9 nm of the α subunit binding site disulfide. J. Biol. Chem.266, 22603–22612 (1991). CASPubMed Google Scholar
Machold, J. et al. Photolabeling reveals the proximity of the α-neurotoxin binding site to the M2 helix of the ion channel in the nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA92, 7282–7286 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zhong, W. et al. From ab initio quantum mechanics to molecular neurobiology: a cation–π binding site in the nicotinic receptor. Proc. Natl Acad. Sci. USA95, 12088–12093 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, J. D., Sharples, C. G. & Caldwell, W. S. Molecular recognition in nicotinic acetylcholine receptors: the importance of π–cation interactions. J. Med. Chem.42, 3066–3074 (1999). ArticleCASPubMed Google Scholar
Martin, M. D. & Karlin, A. Functional effects on the acetylcholine receptor of multiple mutations of γAsp174 and δAsp180. Biochemistry36, 10742–10750 (1997). ArticleCASPubMed Google Scholar
Akk, G., Zhou, M. & Auerbach, A. A mutational analysis of the acetylcholine receptor channel transmitter binding site. Biophys. J.76, 207–218 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stauffer, D. A. & Karlin, A. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry33, 6840–6849 (1994). ArticleCASPubMed Google Scholar
Osaka, H., Sugiyama, N. & Taylor, P. Distinctions in agonist and antagonist specificity conferred by anionic residues of the nicotinic acetylcholine receptor. J. Biol. Chem.273, 12758–12765 (1998). ArticleCASPubMed Google Scholar
Karlin, A. Chemical modification of the active site of the acetylcholine receptor. J. Gen. Physiol.54, 245S–264S (1969). ArticleCAS Google Scholar
Sullivan, D. A. & Cohen, J. B. Mapping the agonist binding site of the nicotinic acetylcholine receptor. Orientation requirements for activation by covalent agonist. J. Biol. Chem.275, 12651–12660 (2000). ArticleCASPubMed Google Scholar
Cohen, J. B., Sharp, S. D. & Liu, W. S. Structure of the agonist-binding site of the nicotinic acetylcholine receptor. [3H]Acetylcholine mustard identifies residues in the cation-binding subsite. J. Biol. Chem.266, 23354–23364 (1991). CASPubMed Google Scholar
Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron28, 165–181 (2000).The structure of the ligand-binding portion of the extracellular domain of a glutamate receptor (not a Cys-loop receptor) was solved to high resolution. This paper shows that ligands induce a graded change in this structure depending on their effectiveness as an activator. ArticleCASPubMed Google Scholar
Damle, V. N. & Karlin, A. Effects of agonists and antagonists on the reactivity of the binding site disulfide in acetylcholine receptor from Torpedo californica. Biochemistry19, 3924–3932 (1980). ArticleCASPubMed Google Scholar
Steinbach, J. H. & Chen, Q. Antagonist and partial agonist actions of d-tubocurarine at mammalian muscle acetylcholine receptors. J. Neurosci.15, 230–240 (1995). ArticleCASPubMedPubMed Central Google Scholar
Revah, F. et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature353, 846–849 (1991). ArticleCASPubMed Google Scholar
Mishina, M. et al. Location of functional regions of acetylcholine receptor α-subunit by site directed mutagenesis. Nature313, 364–369 (1985). ArticleCASPubMed Google Scholar
Galzi, J. L. et al. Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Lett.294, 198–202 (1991). ArticleCASPubMed Google Scholar
Sine, S. M., Quiram, P., Papanikolaou, F., Kreienkamp, H. J. & Taylor, P. Conserved tyrosines in the α subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform antagonists. J. Biol. Chem.269, 8808–8816 (1994). CASPubMed Google Scholar
Tomaselli, G. F., McLaughlin, J. T., Jurman, M. E., Hawrot, E. & Yellen, G. Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys. J.60, 721–727 (1991). ArticleCASPubMedPubMed Central Google Scholar
O'Leary, M. E., Filatov, G. N. & White, M. M. Characterization of d-tubocurarine binding site of Torpedo acetylcholine receptor. Am. J. Physiol.266, C648–C653 (1994). ArticleCASPubMed Google Scholar
Xie, Y. & Cohen, J. B. Contributions of Torpedo nicotinic acetylcholine receptor γTrp-55 and δTrp-57 to agonist and competitive antagonist function. J. Biol. Chem.276, 2417–2426 (2001).These tryptophan residues were the first non- α-subunit residues to be identified that contribute to the ACh-binding site. The properties of mutants in these residues provide insight into the asymmetry of the binding sites and the induction of conformational change by the binding of (+)-tubocurarine. ArticleCASPubMed Google Scholar
Sine, S. M., Kreienkamp, H. J., Bren, N., Maeda, R. & Taylor, P. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinants of α-conotoxin M1 selectivity. Neuron15, 205–211 (1995). ArticleCASPubMed Google Scholar
Chiara, D. C., Xie, Y. & Cohen, J. B. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify γTyr-111/δArg-113 as antagonist affinity determinants. Biochemistry38, 6689–6698 (1999). ArticleCASPubMed Google Scholar
Sine, S. M. Identification of equivalent residues in the γ, δ, and ɛ subunits of the nicotinic receptor that contribute to α-bungarotoxin binding. J. Biol. Chem.272, 23521–23527 (1997). ArticleCASPubMed Google Scholar
Damle, V. N. & Karlin, A. Affinity labeling of one of two α-neurotoxin binding sites in acetylcholine receptor from Torpedo californica. Biochemistry17, 2039–2045 (1978). ArticleCASPubMed Google Scholar
Martinez, K. L., Corringer, P. J., Edelstein, S. J., Changeux, J. P. & Mérola, F. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy. Biochemistry39, 6979–6990 (2000). ArticleCASPubMed Google Scholar
McArdle, J. J. et al. Waglerin-1 selectively blocks the epsilon form of the muscle nicotinic acetylcholine receptor. J. Pharmacol. Exp. Ther.289, 543–550 (1999). CASPubMed Google Scholar
Molles, B. E. et al. Identification of residues at the α and ɛ subunit interfaces mediating species selectivity of Waglerin-1 for nicotinic acetylcholine receptors. J. Biol. Chem. 27 November 2001 [epub ahead of print].
Osaka, H., Malany, S., Molles, B. E., Sine, S. M. & Taylor, P. Pairwise electrostatic interactions between α-neurotoxins and γ, δ, and ɛ subunits of the nicotinic acetylcholine receptor. J. Biol. Chem.275, 5478–5484 (2000). ArticleCASPubMed Google Scholar
Edelstein, S. & Changeux, J. P. Allosteric transitions of the acetylcholine receptor. Adv. Protein Chem.51, 121–184 (1998). ArticleCASPubMed Google Scholar
Lee, C. Y. Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu. Rev. Pharmacol.12, 265–286 (1972). ArticleCASPubMed Google Scholar
Changeux, J. P., Kasai, M. & Lee, C. Y. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl Acad. Sci. USA67, 1241–1247 (1970). ArticleCASPubMedPubMed Central Google Scholar
Miledi, R., Molinoff, P. & Potter, L. T. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature229, 554–557 (1971). ArticleCASPubMed Google Scholar
Tsetlin, V. Snake venom α-neurotoxins and other 'three-finger' proteins. Eur. J. Biochem.264, 281–286 (1999). ArticleCASPubMed Google Scholar
Haggerty, J. G. & Froehner, S. C. Restoration of 125I-α-bungarotoxin binding activity to the α subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J. Biol. Chem.256, 8294–8297 (1981). CASPubMed Google Scholar
Wilson, P. T., Lentz, T. L. & Hawrot, E. Determination of the primary amino acid sequence specifying the α-bungarotoxin binding site on the α subunit of the acetylcholine receptor from Torpedo californica. Proc. Natl Acad. Sci. USA82, 8790–8794 (1985). ArticleCASPubMedPubMed Central Google Scholar
Neumann, D., Barchan, D., Safran, A., Gershoni, J. M. & Fuchs, S. Mapping of the α-bungarotoxin binding site within the α subunit of the acetylcholine receptor. Proc. Natl Acad. Sci. USA83, 3008–3011 (1986). ArticleCASPubMedPubMed Central Google Scholar
Samson, A. O., Chill, J. H., Rodriguez, E., Scherf, T. & Anglister, J. NMR mapping and secondary structure determination of the major acetylcholine receptor α-subunit determinant interacting with α-bungarotoxin. Biochemistry40, 5464–5473 (2001). ArticleCASPubMed Google Scholar
Harel, M. et al. The binding site of acetylcholine receptor as visualized in the X-ray structure of a complex between α-bungarotoxin and a mimotope peptide. Neuron32, 173–174 (2001).A remarkable tale is told of the development of a short synthetic peptide with high affinity for α-bungarotoxin, the crystallization of the complex, and the superposition of the structure on the AChBP. By homology, this reveals the mode of binding of the snake α-neurotoxins to the ACh receptor. Article Google Scholar
Kreienkamp, H. J., Sine, S. M., Maeda, R. K. & Taylor, P. Glycosylation sites selectively interfere with α-toxin binding to the nicotinic acetylcholine receptor. J. Biol. Chem.269, 8108–8114 (1994). CASPubMed Google Scholar
Antil, S., Servent, D. & Menez, A. Variability among the sites by which curaremimetic toxins bind to Torpedo acetylcholine receptor, as revealed by identification of the functional residues of α-cobratoxin. J. Biol. Chem.274, 34851–34858 (1999). ArticleCASPubMed Google Scholar
Spura, A. et al. Biotinylation of substituted cysteines in the nicotinic acetylcholine receptor reveals distinct binding modes for α-bungarotoxin and erabutoxin a. J. Biol. Chem.275, 22452–22460 (2000). ArticleCASPubMed Google Scholar
Spura, A. et al. Probing the agonist domain of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis reveals residues in proximity to the α-bungarotoxin binding site. Biochemistry38, 4912–4921 (1999). ArticleCASPubMed Google Scholar
Gorne-Tschelnokow, U., Strecker, A., Kaduk, C., Naumann, D. & Hucho, F. The transmembrane domains of the nicotinic acetylcholine receptor contain α-helical and β structures. EMBO J.13, 338–341 (1994). ArticleCASPubMedPubMed Central Google Scholar
Methot, N., Ritchie, B. D., Blanton, M. P. & Baenziger, J. E. Structure of the pore-forming transmembrane domain of a ligand-gated ion channel. J. Biol. Chem.276, 23726–23732 (2001). ArticleCASPubMed Google Scholar
Akabas, M. H., Kaufmann, C., Archdeacon, P. & Karlin, A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron13, 919–927 (1994). ArticleCASPubMed Google Scholar
Zhang, H. & Karlin, A. Contribution of the β subunit M2 segment to the ion-conducting pathway of the acetylcholine receptor. Biochemistry37, 7952–7964 (1998).The application of SCAM to 104 cysteine-substitution mutants of two membrane-spanning segments of two ACh receptor subunits is summarized. The modification of one of the mutants causes the appearance of multiple single-channel subconductance states and channel lifetimes. ArticleCASPubMed Google Scholar
Akabas, M. H. & Karlin, A. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the α subunit. Biochemistry34, 12496–12500 (1995). ArticleCASPubMed Google Scholar
Zhang, H. & Karlin, A. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the β subunit. Biochemistry36, 15856–15864 (1997). ArticleCASPubMed Google Scholar
Blanton, M. P. & Cohen, J. B. Identifying the lipid–protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implication. Biochemistry33, 2859–2872 (1994). ArticleCASPubMed Google Scholar
Blanton, M. P., Dangott, L. J., Raja, S. K., Lala, A. K. & Cohen, J. B. Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound [3H]-diazofluorene. J. Biol. Chem.273, 8659–8668 (1998). ArticleCASPubMed Google Scholar
Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit. Proc. Natl Acad. Sci. USA80, 1111–1115 (1983). ArticleCASPubMedPubMed Central Google Scholar
Devillers-Thiery, A., Giraudat, J., Bentaboulet, M. & Changeux, J.-P. Complete mRNA coding sequence of the acetylcholine binding α subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc. Natl Acad. Sci. USA80, 2067–2071 (1983). ArticleCASPubMedPubMed Central Google Scholar
Noda, M. et al. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature302, 528–532 (1983). ArticleCASPubMed Google Scholar
Tamamizu, S. et al. Functional effects of periodic tryptophan substitutions in the α M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry39, 4666–4673 (2000). ArticleCASPubMed Google Scholar
Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 1992). Google Scholar
Sakmann, B. Nobel Lecture. Elementary steps in synaptic transmission revealed by currents through single ion channels. Neuron8, 613–629 (1992). ArticleCASPubMed Google Scholar
Dani, J. A. Open channel structure and ion binding sites of the nicotinic acetylcholine receptor channel. J. Neurosci.9, 884–892 (1989). ArticleCASPubMedPubMed Central Google Scholar
Eisenberg, R. Computing the field in proteins and channels. J. Membr. Biol.150, 1–25 (1996). ArticleCASPubMed Google Scholar
Green, M. E. & Lu, J. Monte-Carlo simulation of the effects of charges on water and ions in a tapered pore. J. Colloid Interface Sci.171, 117–126 (1995). ArticleCAS Google Scholar
Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature414, 37–42 (2001). ArticleCASPubMed Google Scholar
Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature414, 43–48 (2001).In references116and117, the mechanism of ion conduction in a K+ channel is revealed in exquisite detail. These papers should be avoided by the envious. ArticleCASPubMed Google Scholar
Villarroel, A., Herlitze, S., Koenen, M. & Sakmann, B. Location of a threonine residue in the α-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel. Proc. R. Soc. Lond. B243, 69–74 (1991). ArticleCAS Google Scholar
Konno, T. et al. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc. R. Soc. Lond. B244, 69–79 (1991). ArticleCAS Google Scholar
Imoto, K. et al. A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. FEBS Lett.289, 193–200 (1991). ArticleCASPubMed Google Scholar
Cohen, B. N., Labarca, C., Davidson, N. & Lester, H. A. Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. J. Gen. Physiol.100, 373–400 (1992). ArticleCASPubMed Google Scholar
Corringer, P. J. et al. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron22, 831–843 (1999).By painstaking alterations in the sequence of M2, the authors determine the necessary and sufficient conditions for switching from cation and to anion selectivity. The result is amazing and somewhat mysterious. ArticleCASPubMed Google Scholar
Wilson, G. G. & Karlin, A. The location of the gate in the acetylcholine receptor channel. Neuron20, 1269–1281 (1998).A new approach to locating a gate is applied to the ACh receptor, and the result is controversial. ArticleCASPubMed Google Scholar
Wilson, G. G. & Karlin, A. Acetylcholine channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc. Natl Acad. Sci. USA98, 1241–1248 (2001).Widespread differences in the structure of M2 in the different states of the receptor are rationalized in terms of gating and gates. ArticleCASPubMedPubMed Central Google Scholar
Imoto, K. et al. Location of a δ-subunit region determining ion transport through the acetylcholine receptor channel. Nature324, 670–674 (1986). ArticleCASPubMed Google Scholar
Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature335, 645–648 (1988). ArticleCASPubMed Google Scholar
Giraudat, J., Dennis, M., Heidmann, T., Chang, J.-Y. & Changeux, J.-P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc. Natl Acad. Sci. USA83, 2719–2723 (1986). ArticleCASPubMedPubMed Central Google Scholar
Giraudat, J. et al. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the β and δ chains. Biochemistry26, 2410–2418 (1987). ArticleCASPubMed Google Scholar
Hucho, F., Oberthur, W. & Lottspeich, F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett.205, 137–142 (1986). ArticleCASPubMed Google Scholar
DiPaola, M., Kao, P. N. & Karlin, A. Mapping the α-subunit site photolabeled by the noncompetitive inhibitor [3H]quinacrine azide in the active state of the nicotinic acetylcholine receptor. J. Biol. Chem.265, 11017–11029 (1990). CASPubMed Google Scholar
Akabas, M. H., Stauffer, D. A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science258, 307–310 (1992). ArticleCASPubMed Google Scholar
Pascual, J. M. & Karlin, A. State-dependent accessibility and electrostatic potential in the channel of the acetylcholine receptor: inferences from rates of reaction of thiosulfonates with substituted cysteines in the M2 segment of the α subunit. J. Gen. Physiol.111, 717–739 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wilson, G. G., Pascual, J. M., Brooijmans, N., Murray, D. & Karlin, A. The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel. J. Gen. Physiol.115, 93–106 (2000). ArticleCASPubMedPubMed Central Google Scholar
Heidmann, T. & Changeux, J. P. Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. Proc. Natl Acad. Sci. USA81, 1897–1901 (1984). ArticleCASPubMedPubMed Central Google Scholar
Cox, R. N., Kaldany, R. R., DiPaola, M. & Karlin, A. Time-resolved photolabeling by quinacrine azide of a noncompetitive inhibitor site of the nicotinic acetylcholine receptor in a transient, agonist-induced state. J. Biol. Chem.260, 7186–7193 (1985). CASPubMed Google Scholar
White, B. H. & Cohen, J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J. Biol. Chem.267, 15770–15783 (1992). CASPubMed Google Scholar
McCarthy, M. P. & Moore, M. A. Effects of lipids and detergents on the conformation of the nicotinic acetylcholine receptor from Torpedo californica. J. Biol. Chem.267, 7655–7663 (1992). CASPubMed Google Scholar
Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Bertrand, S. & Changeux, J. P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc. Natl Acad. Sci. USA90, 6971–6975 (1993). ArticleCASPubMedPubMed Central Google Scholar
Labarca, C. et al. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature376, 514–516 (1995). ArticleCASPubMed Google Scholar
Filatov, G. N. & White, M. M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol. Pharmacol.48, 379–384 (1995). CASPubMed Google Scholar
Kosolapov, A. V., Filatov, G. N. & White, M. M. Acetylcholine receptor gating is influenced by the polarity of amino acids at position 9′ in the M2 domain. J. Membr. Biol.174, 191–197 (2000). ArticleCASPubMed Google Scholar
Grosman, C. & Auerbach, A. Asymmetric and independent contribution of the second transmembrane segment 12′ residues to diliganded gating of acetylcholine receptor channels: a single-channel study with choline as the agonist. J. Gen. Physiol.115, 637–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Grosman, C., Salamone, F. N., Sine, S. M. & Auerbach, A. The extracellular linker of muscle acetylcholine receptor channels is a gating control element. J. Gen. Physiol.116, 327–340 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. L. et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nature Neurosci.2, 226–233 (1999). ArticleCASPubMed Google Scholar
Bouzat, C., Barrantes, F. & Sine, S. Nicotinic receptor fourth transmembrane domain: hydrogen bonding by conserved threonine contributes to channel gating kinetics. J. Gen. Physiol.115, 663–672 (2000). ArticleCASPubMedPubMed Central Google Scholar
DaCosta, C. J., Ogrel, A. A., McCardy, E. A., Blanton, M. P. & Baenziger, J. E. Lipid–protein interactions at the nicotinic acetylcholine receptor: a functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J. Biol. Chem.277, 201–208 (2002).The profound effects of the lipid environment on receptor structure and function are reviewed and further shown. ArticleCASPubMed Google Scholar
Wang, H. L. et al. Fundamental gating mechanism of nicotinic receptor channel revealed by mutation causing a congenital myasthenic syndrome. J. Gen. Physiol.116, 449–462 (2000). ArticleCASPubMedPubMed Central Google Scholar
Takahama, K. & Klee, M. R. Voltage clamp analysis of the kinetics of piperidine-induced chloride current in isolated Aplysia neurons. Naunyn Schmiedebergs Arch. Pharmacol.342, 575–581 (1990). ArticleCASPubMed Google Scholar
Kehoe, J. & McIntosh, J. M. Two distinct nicotinic receptors, one pharmacologically similar to the vertebrate α7-containing receptor, mediate Cl currents in Aplysia neurons. J. Neurosci.18, 8198–8213 (1998). ArticleCASPubMedPubMed Central Google Scholar
Adams, D. J., Dwyer, T. M. & Hille, B. The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol.75, 493–510 (1980). ArticleCASPubMed Google Scholar
Lewis, C. A. & Stevens, C. F. Acetylcholine receptor channel ionic selectivity: ions experience an aqueous environment. Proc. Natl Acad. Sci. USA80, 6110–6113 (1983). ArticleCASPubMedPubMed Central Google Scholar
Fieber, L. A. & Adams, D. J. Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J. Physiol. (Lond.)434, 215–237 (1991). ArticleCAS Google Scholar
Vernino, S., Amador, M., Luetje, C. W., Patrick, J. & Dani, J. A. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron8, 127–134 (1992). ArticleCASPubMed Google Scholar
Katz, E. et al. High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor. Hear. Res.141, 117–128 (2000). ArticleCASPubMed Google Scholar
Cohen, B. N., Labarca, C., Czyzyk, L., Davidson, N. & Lester, H. A. Tris+/Na+ permeability ratios of nicotinic acetylcholine receptors are reduced by mutations near the intracellular end of the M2 region. J. Gen. Physiol.99, 545–572 (1992). ArticleCASPubMed Google Scholar
Villarroel, A., Herlitze, S., Witzemann, V., Koenen, M. & Sakmann, B. Asymmetry of the rat acetylcholine receptor subunits in the narrow region of the pore. Proc. R. Soc. Lond. B249, 317–324 (1992). ArticleCAS Google Scholar
Gunthorpe, M. J. & Lummis, S. C. Conversion of the ion selectivity of the 5-HT3A receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem.276, 10977–10983 (2001). | PubMed | ArticleCASPubMed Google Scholar
Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R. & Barry, P. H. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys. J.79, 247–259 (2000). ArticleCASPubMedPubMed Central Google Scholar
Adcock, C., Smith, G. R. & Sansom, M. S. The nicotinic acetylcholine receptor: from molecular model to single-channel conductance. Eur. Biophys. J.29, 29–37 (2000). ArticleCASPubMed Google Scholar
Yakel, J. L., Lagrutta, A., Adelman, J. P. & North, R. A. Single amino acid substitution affects desensitization of the 5-hydroxytryptamine type 3 receptor expressed in Xenopus oocytes. Proc. Natl Acad. Sci. USA90, 5030–5033 (1993). ArticleCASPubMedPubMed Central Google Scholar
Xu, M. & Akabas, M. H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor α1 subunit. J. Gen. Physiol.107, 195–205 (1996). ArticleCASPubMed Google Scholar
Karlin, A. & Akabas, M. H. Substituted-cysteine accessibility method. Methods Enzymol.293, 123–145 (1998). ArticleCASPubMed Google Scholar
Javitch, J. A., Li, X., Kaback, J. & Karlin, A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl Acad. Sci. USA91, 10355–10359 (1994). ArticleCASPubMedPubMed Central Google Scholar
Javitch, J. A., Fu, D., Chen, J. & Karlin, A. Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron14, 825–831 (1995). ArticleCASPubMed Google Scholar
Bruice, T. W. & Kenyon, G. L. Novel alkyl alkanethiosulfonate sulfhydryl reagents. Modification of derivatives of l-cysteine. J. Protein Chem.1, 47–58 (1982). ArticleCAS Google Scholar
Roberts, D. D., Lewis, S. D., Ballou, D. P., Olson, S. T. & Shafer, J. A. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry25, 5595–5601 (1986). ArticleCASPubMed Google Scholar
Kaback, H. R. A molecular mechanism for energy coupling in a membrane transport protein, the lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA94, 5539–5543 (1997). ArticleCASPubMedPubMed Central Google Scholar