Control of goal-directed and stimulus-driven attention in the brain (original) (raw)

References

  1. Eriksen, C. W. & Hoffman, J. E. The extent of processing of noise elements during selective encoding from visual displays. Percept. Psychophys. 14, 155–160 (1973).
    Article Google Scholar
  2. Posner, M. I., Snyder, C. R. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).
    Article CAS PubMed Google Scholar
  3. Ball, K. & Sekuler, R. Models of stimulus uncertainty in motion perception. Psychol. Rev. 87, 435–469 (1980).
    Article CAS PubMed Google Scholar
  4. Egeth, H. E., Virzi, R. A. & Garbart, H. Searching for conjunctively defined targets. J. Exp. Psychol. Hum. Percept. Perform. 10, 32–39 (1984).
    Article CAS PubMed Google Scholar
  5. Dosher, B. A. & Lu, Z.-L. Mechanisms of perceptual attention in precuing of location. Vision Res. 40, 1269–1292 (2000).
    Article CAS PubMed Google Scholar
  6. Rosenbaum, D. A. Human movement initiation: specification of arm, direction and extent. J. Exp. Psychol. Gen. 109, 444–474 (1980).
    Article CAS PubMed Google Scholar
  7. Abrams, R. A. & Jonides, J. Programming saccadic eye movements. J. Exp. Psychol. Hum. Percept. Perform. 14, 428–443 (1988).References 1–7 provide evidence that preparatory attention to stimuli and responses facilitates perception and action.
    Article CAS PubMed Google Scholar
  8. Kanwisher, N. & Wojciulik, E. Visual attention: insights from brain imaging. Nature Rev. Neurosci. 1, 91–100 (2000).
    Article CAS Google Scholar
  9. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).References 8 and 9 review the effects of attention on neural mechanisms in the human visual cortex, and discuss the interaction between the frontoparietal network and the visual cortex.
    Article CAS PubMed Google Scholar
  10. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci. 3, 292–297 (2000).Dissociates preparatory goal-directed activity in the IPs for stimulus location from stimulus-driven activity in the TPJ during reorienting to unattended targets.
    Article CAS PubMed Google Scholar
  11. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).
    Article CAS PubMed Google Scholar
  12. Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nature Neurosci. 3, 284–291 (2000).
    Article CAS PubMed Google Scholar
  13. Corbetta, M., Kincade, J. M. & Shulman, G. L. Neural systems for visual orienting and their relationship with working memory. J. Cogn. Neurosci. 14 (in the press).
  14. Shulman, G. L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480–9496 (1999).References 11–14 provide neuroimaging evidence that the human dorsal frontoparietal network is involved in preparing and maintaining expectations for stimulus location and motion.
    Article CAS PubMed PubMed Central Google Scholar
  15. Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  16. Nobre, A. C. et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120, 515–533 (1997).
    Article PubMed Google Scholar
  17. Vandenberghe, R. et al. Attention to one or two features in left and right visual field: a positron emission tomography study. J. Neurosci. 17, 3739–3750 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  18. Culham, J. C. et al. Cortical fMRI activation produced by attentive tracking of moving targets. J. Neurophysiol. 80, 2657–2670 (1998).
    Article CAS PubMed Google Scholar
  19. Wojciulik, E. & Kanwisher, N. The generality of parietal involvement in visual attention. Neuron 23, 747–764 (1999).
    Article CAS PubMed Google Scholar
  20. Gitelman, D. R. et al. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122, 1093–1106 (1999).
    Article PubMed Google Scholar
  21. Perry, R. J. & Zeki, S. The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123, 2273–2288 (2000).
    Article PubMed Google Scholar
  22. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems. Proc. Natl Acad. Sci. USA 95, 831–838 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  23. Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378 (2001).
    Article CAS PubMed Google Scholar
  24. Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34, 475–483 (1996).
    Article CAS PubMed Google Scholar
  25. Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective attention. J. Neurophysiol. 46, 755–772 (1981).
    Article CAS PubMed Google Scholar
  26. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).Shows how preparatory signals for visual attention and eye movements are combined in LIP neurons.
    Article CAS PubMed Google Scholar
  27. Nakamura, K. & Colby, C. L. Visual, saccade-related, and cognitive activation of single neurons in monkey exstrastriate area V3A. J. Neurophysiol. 84, 677–692 (2000).
    Article CAS PubMed Google Scholar
  28. Pashler, H. E. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1998).
    Google Scholar
  29. Shulman, G. L., d'Avossa, G., Tansy, A. P. & Corbetta, M. Two attentional processes in the parietal lobe. Soc. Neurosci. Abstr. 27, 722.20 (2001).
    Google Scholar
  30. Serences, J. T., Schwarzbach, J. & Yantis, S. Control mechanisms of object-based visual attention in human cortex. Soc. Neurosci. Abstr. 27, 348.9 (2001).
    Google Scholar
  31. Le, T. H., Pardo, J. V. & Hu, X. 4T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J. Neurophysiol. 79, 1535–1548 (1998).
    Article CAS PubMed Google Scholar
  32. Assad, J. A. & Maunsell, J. H. R. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373, 518–521 (1995).
    Article CAS PubMed Google Scholar
  33. Toth, L. J. & Assad, J. A. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002).
    Article CAS PubMed Google Scholar
  34. Blake, R., Cepeda, N. J. & Hiris, E. Memory for visual motion. J. Exp. Psychol. Hum. Percept. Perform. 23, 353–369 (1997).
    Article CAS PubMed Google Scholar
  35. Magnussen, S., Greenlee, M. W., Asplund, R. & Dyrnes, S. Stimulus-specific mechanisms of visual short-term memory. Vision Res. 31, 1213–1219 (1991).
    Article CAS PubMed Google Scholar
  36. Awh, E. & Jonides, J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5, 119–126 (2001).Reviews the relationship between spatial working memory and attention.
    Article CAS PubMed Google Scholar
  37. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).
    Article CAS PubMed Google Scholar
  38. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).
    CAS PubMed Google Scholar
  39. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 65, 1464–1483 (1991).
    Article CAS PubMed Google Scholar
  40. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
    Article CAS PubMed Google Scholar
  41. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).References 40 and 41 review the role of the prefrontal cortex in attention and executive control.
    Article CAS PubMed Google Scholar
  42. Savage-Rumbaugh, S., Shanker, S. G. & Talbot, J. T. Apes, Language, and the Human Mind (Oxford Univ. Press, New York, 1998).
    Google Scholar
  43. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).Presents evidence of different preparatory response mechanisms for eye and arm in the macaque posterior parietal cortex.
    Article CAS PubMed Google Scholar
  44. Sakata, H., Taira, M., Kusunoki, M., Murata, A. & Tanaka, Y. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci. 20, 350–357 (1997).
    Article CAS PubMed Google Scholar
  45. Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).
    Article CAS PubMed Google Scholar
  46. Wise, S. P., Weinrich, M. & Mauritz, K. H. Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Res. 260, 301–305 (1983).
    Article CAS PubMed Google Scholar
  47. Kawashima, R., Roland, P. E. & O'Sullivan, B. Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. Cereb. Cortex 5, 111–122 (1995).
    Article CAS PubMed Google Scholar
  48. Petit, L., Clark, V. P., Ingeholm, J. & Haxby, J. V. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J. Neurophysiol. 77, 3386–3390 (1997).
    Article CAS PubMed Google Scholar
  49. Connolly, J. D., Goodale, M. A., Desouza, J. F., Menon, R. S. & Vilis, T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J. Neurophysiol. 84, 1645–1655 (2000).
    Article CAS PubMed Google Scholar
  50. Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000).
    Article CAS PubMed Google Scholar
  51. Rizzolatti, G., Riggio, L., Dascola, I. & Umiltá, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987).
    Article CAS PubMed Google Scholar
  52. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).
    Article CAS PubMed Google Scholar
  53. Nobre, A. C., Gitelman, D. R., Dias, E. C. & Mesulam, M. M. Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11, 210–216 (2000).
    Article CAS PubMed Google Scholar
  54. Rushworth, M. F., Paus, T. & Sipila, P. K. Attention systems and the organization of the human parietal cortex. J. Neurosci. 21, 5262–5271 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  55. Allport, A., Styles, E. A. & Hsieh, S. in Attention and Performance XV (eds Umilta, C. & Moscovitch, M.) 421–452 (Erlbaum, Hillsdale, New Jersey, 1994).
    Google Scholar
  56. Rogers, R. D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. 124, 207–231 (1995).
    Article Google Scholar
  57. Meiran, N., Chorev, Z. & Sapir, A. Component processes in task switching. Cognit Psychol 41, 211–253 (2000).References 55–57 describe psychological processes involved in task switching.
    Article CAS PubMed Google Scholar
  58. Fuster, J. M. in Cerebral Cortex (eds Jones, E. G. & Peters, A.) 151–177 (Plenum, New York, 1985).
    Google Scholar
  59. Goldman-Rakic, P. S. in Handbook of Physiology, Section 1. Higher Functions of the Brain (eds Plum, F. & Mountcastle, V.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987).
    Google Scholar
  60. Kimberg, D. Y., Aguirre, G. K. & D'Esposito, M. Modulation of task-related neural activity in task-switching: an fMRI study. Brain Res. Cogn. Brain Res. 10, 189–196 (2000).
    Article CAS PubMed Google Scholar
  61. Sohn, M.-H., Ursu, S., Anderson, J. R., Stenger, V. A. & Carter, C. S. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc. Natl Acad. Sci. USA 97, 13448–13453 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  62. James, W. Principles of Psychology Vol. 1 (Henry-Holt & Co., New York, 1890).
    Google Scholar
  63. Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).
    Article CAS PubMed Google Scholar
  64. Posner, M. I. & Cohen, Y. in Attention and Performance X (eds Bouman, H. & Bowhuis, D.) 55–66 (Erlbaum, Hillsdale, New Jersey, 1984).
    Google Scholar
  65. Muller, H. J. & Rabbitt, M. A. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. 15, 315–330 (1989).
    CAS Google Scholar
  66. Klein, R. M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000).
    Article CAS PubMed Google Scholar
  67. Jonides, J. in Attention and Performance XI (eds Posner, M. I. & Marin, O.) 187–205 (Erlbaum, Hillsdale, New Jersey, 1981).
    Google Scholar
  68. Yantis, S. & Jonides, J. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 16, 121–134 (1990).
    Article CAS PubMed Google Scholar
  69. Folk, C. L., Remington, R. W. & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 18, 1030–1044 (1992).References 68 and 69 discuss cognitive influences on stimulus-driven orienting.
    Article CAS PubMed Google Scholar
  70. Wolfe, J. M. Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1, 202–238 (1994).
    Article CAS PubMed Google Scholar
  71. Thompson, K. G., Bichot, N. P. & Schall, J. D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol. 77, 1046–1050 (1997).
    Article CAS PubMed Google Scholar
  72. Bichot, N. P. & Schall, J. D. Effects of similarity and history on neural mechanisms of visual selection. Nature Neurosci. 2, 549–554 (1999).
    Article CAS PubMed Google Scholar
  73. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).References 71–73 show that FEF and LIP neurons are modulated by stimulus salience and task relevance.
    Article CAS PubMed Google Scholar
  74. Corbetta, M., Shulman, G. L., Miezin, F. M. & Petersen, S. E. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270, 802–805 (1995).
    Article CAS PubMed Google Scholar
  75. Leonards, U., Sunaert, S., Van Hecke, P. & Orban, G. A. Attention mechanisms in visual search — an fMRI study. J. Cogn. Neurosci. 12, 61–75 (2000).
    Article PubMed Google Scholar
  76. Shulman, G. L., Ollinger, J. M., Linenweber, M., Petersen, S. E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl Acad. Sci. USA 98, 313–318 (2001).
    Article CAS PubMed Google Scholar
  77. Huettel, S. A., Guzeldere, G. & McCarthy, G. Dissociating the neural mechanisms of visual attention in change detection using functional MRI. J. Cogn. Neurosci. 13, 1006–1018 (2001).
    Article CAS PubMed Google Scholar
  78. Beck, D. M., Rees, G., Frith, C. D. & Lavie, N. Neural correlates of change detection and change blindness. Nature Neurosci. 4, 645–650 (2001).References 76–78 show that attentional search and target detection modulate the dorsal frontoparietal network and the visual cortex.
    Article CAS PubMed Google Scholar
  79. Arrington, C. M., Carr, T. H., Mayer, A. R. & Rao, S. M. Neural mechanisms of visual attention: object-based selection of a region in space. J. Cogn. Neurosci. 12, 106–117 (2000).
    Article PubMed Google Scholar
  80. Kirino, E., Belger, A., Goldman-Rakic, P. & McCarthy, G. Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J. Neurosci. 20, 6612–6618 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  81. Marois, R., Leung, H. C. & Gore, J. C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 25, 717–728 (2000).
    Article CAS PubMed Google Scholar
  82. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci. 3, 277–283 (2000).Presents evidence that the ventral frontoparietal network responds to stimulus changes in different sensory modalities.
    Article CAS PubMed Google Scholar
  83. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11, 825–836 (2001).
    Article CAS PubMed Google Scholar
  84. Knight, R. T. & Scabini, D. Anatomic bases of event-related potentials and their relationship to novelty detection in humans. J. Clin. Neurophysiol. 15, 3–13 (1998).
    Article CAS PubMed Google Scholar
  85. Daffner, K. R. et al. The central role of the prefrontal cortex in directing attention to novel events. Brain 123, 927–939 (2000).
    Article PubMed Google Scholar
  86. Wilkins, A. J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 25, 359–365 (1987).
    Article CAS PubMed Google Scholar
  87. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14, 1256–1267 (2001).
    Article CAS PubMed Google Scholar
  88. Serences, J., Shomstein, S., Leber, A., Yantis, S. & Egeth, H. E. Neural mechanisms of goal-directed and stimulus-driven attentional control. Psychon. Soc. Abstr. 42, 135 (2001).
  89. Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol. 83, 3133–3139 (2000).
    Article CAS PubMed Google Scholar
  90. Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38, 133–142 (2001).
    Article CAS PubMed Google Scholar
  91. Stuss, D. T. & Benson, D. F. The Frontal Lobes (Raven, New York, 1986).
    Google Scholar
  92. Yokoyama, K., Jennings, R., Ackles, P., Hood, P. & Boller, F. Lack of heart rate changes during an attention-demanding task after right hemisphere lesions. Neurology 37, 624–630 (1987).
    Article CAS PubMed Google Scholar
  93. Steinmetz, M. A. & Constantinidis, C. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb. Cortex 5, 448–456 (1995).
    Article CAS PubMed Google Scholar
  94. Robinson, D. L., Bowman, E. M. & Kertzman, C. Covert orienting of attention in macaques. II. Contributions of parietal cortex. J. Neurophysiol. 74, 698–721 (1995).
    Article CAS PubMed Google Scholar
  95. Constantinidis, C. & Steinmetz, M. A. Neuronal responses in area 7a to multiple stimulus displays. II. Responses are suppressed at the cued location. Cereb. Cortex 11, 592–597 (2001).
    Article CAS PubMed Google Scholar
  96. Shulman, G. L. et al. Reactivation of networks involved in preparatory states. Cereb. Cortex (in the press).
  97. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).
    Article CAS PubMed Google Scholar
  98. Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354, 1325–1346 (1999).Reviews the pathophysiology and anatomy of unilateral neglect.
    Article CAS PubMed PubMed Central Google Scholar
  99. Morrison, J. H. & Foote, S. L. Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in old and new world monkeys. J. Comp. Neurol. 243, 117–128 (1986).
    Article CAS PubMed Google Scholar
  100. Oke, A., Keller, R., Mefford, I. & Adams, R. N. Lateralization of norepinephrine in human thalamus. Science 200, 1411–1413 (1978).
    Article CAS PubMed Google Scholar
  101. Pardo, J. V., Fox, P. T. & Raichle, M. E. Localization of a human system for sustained attention by positron emission tomography. Nature 349, 61–64 (1991).
    Article CAS PubMed Google Scholar
  102. Aston-Jones, G., Foote, S. L. & Bloom, F. E. in Frontiers of Clinical Neuroscience (ed. Ziegler, M. G.) (Williams & Wilkins, Baltimore, Maryland, 1984).
    Google Scholar
  103. Dalley, J. W. et al. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J. Neurosci. 21, 4908–4914 (2001).Provides a possible link between activity in ventral frontoparietal networks and noradrenaline projection systems.
    Article CAS PubMed PubMed Central Google Scholar
  104. Heilman, K. M., Watson, R. T. & Valenstein, E. in Clinical Neuropsychology (eds Heilman, K. M. & Valenstein, E.) 243–293 (Oxford Univ. Press, New York, 1985).
    Google Scholar
  105. Robertson, I. H., Mattingley, J. B., Rorden, C. & Driver, J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395, 169–172 (1998).
    Article CAS PubMed Google Scholar
  106. Corbetta, M., Kincade, M. J. & Shulman, G. L. in The Cognitive and Neural Basis of Spatial Neglect (eds Karnath, H. O., Milner, D. & Vallar, G.) (Oxford Univ. Press, Oxford, in the press).
  107. Vallar, G. & Perani, D. in Neurophysiological and Neuropsychological Aspects of Spatial Neglect (ed. Jeannerod, M.) 235–258 (Elsevier, North-Holland, Amsterdam, 1987).
    Book Google Scholar
  108. Karnath, H. O., Ferber, S. & Himmelbach, M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411, 950–953 (2001).
    Article CAS PubMed Google Scholar
  109. Husain, M. & Kennard, C. Visual neglect associated with frontal lobe infarction. J. Neurol. 243, 652–657 (1996).
    Article CAS PubMed Google Scholar
  110. Stone, S. P., Patel, P., Greenwood, R. J. & Halligan, P. W. Measuring visual neglect in acute stroke and predicting its recovery: the visual neglect recovery index. J. Neurol. Neurosurg. Psychiatry 55, 431–436 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  111. Weinberg, J. et al. Visual scanning training effects on reading-related tasks in acquired brain-damage. Arch. Phys. Med. Rehabil. 58, 479–486 (1977).
    CAS PubMed Google Scholar
  112. Posner, M. I., Walker, J. A., Friedrich, F. J. & Rafal, R. D. Effects of parietal injury on covert orienting of attention. J. Neurosci. 4, 1863–1874 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  113. Smania, N. et al. The spatial distribution of visual attention in hemineglect. Brain 121, 1759–1770 (1998).
    Article PubMed Google Scholar
  114. Mattingley, J. B., Husain, M., Rorden, C., Kennard, C. & Driver, J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 392, 179–182 (1998).
    Article CAS PubMed Google Scholar
  115. Kinsbourne, M. in Unilateral Neglect: Clinical and Experimental Studies (eds Robertson, I. H. & Marshall, J.) 63–86 (Erlbaum, Hillsdale, New Jersey, 1993).
    Google Scholar
  116. Witte, E. A., Villareal, M. & Marrocco, R. T. Visual orienting and alerting in rhesus monkeys: comparison with humans. Behav Brain Res 82, 103–112 (1996).
    Article CAS PubMed Google Scholar
  117. Drury, H. A. et al. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J. Cogn. Neurosci. 8, 1–28 (1996).
    Article CAS PubMed Google Scholar
  118. Thompson, K. G., Bichot, N. P. & Schall, J. D. in Visual Attention and Cortical Circuits (eds Braun, J., Koch, C. & Davis, J. L.) (MIT Press, Cambridge, Massachusetts, 2001).
    Google Scholar

Download references