Control of goal-directed and stimulus-driven attention in the brain (original) (raw)
References
Eriksen, C. W. & Hoffman, J. E. The extent of processing of noise elements during selective encoding from visual displays. Percept. Psychophys.14, 155–160 (1973). Article Google Scholar
Posner, M. I., Snyder, C. R. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol.109, 160–174 (1980). ArticleCASPubMed Google Scholar
Ball, K. & Sekuler, R. Models of stimulus uncertainty in motion perception. Psychol. Rev.87, 435–469 (1980). ArticleCASPubMed Google Scholar
Egeth, H. E., Virzi, R. A. & Garbart, H. Searching for conjunctively defined targets. J. Exp. Psychol. Hum. Percept. Perform.10, 32–39 (1984). ArticleCASPubMed Google Scholar
Dosher, B. A. & Lu, Z.-L. Mechanisms of perceptual attention in precuing of location. Vision Res.40, 1269–1292 (2000). ArticleCASPubMed Google Scholar
Rosenbaum, D. A. Human movement initiation: specification of arm, direction and extent. J. Exp. Psychol. Gen.109, 444–474 (1980). ArticleCASPubMed Google Scholar
Abrams, R. A. & Jonides, J. Programming saccadic eye movements. J. Exp. Psychol. Hum. Percept. Perform.14, 428–443 (1988).References1–7provide evidence that preparatory attention to stimuli and responses facilitates perception and action. ArticleCASPubMed Google Scholar
Kanwisher, N. & Wojciulik, E. Visual attention: insights from brain imaging. Nature Rev. Neurosci.1, 91–100 (2000). ArticleCAS Google Scholar
Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci.23, 315–341 (2000).References8and9review the effects of attention on neural mechanisms in the human visual cortex, and discuss the interaction between the frontoparietal network and the visual cortex. ArticleCASPubMed Google Scholar
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci.3, 292–297 (2000).Dissociates preparatory goal-directed activity in the IPs for stimulus location from stimulus-driven activity in the TPJ during reorienting to unattended targets. ArticleCASPubMed Google Scholar
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron22, 751–761 (1999). ArticleCASPubMed Google Scholar
Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nature Neurosci.3, 284–291 (2000). ArticleCASPubMed Google Scholar
Corbetta, M., Kincade, J. M. & Shulman, G. L. Neural systems for visual orienting and their relationship with working memory. J. Cogn. Neurosci.14 (in the press).
Shulman, G. L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci.19, 9480–9496 (1999).References11–14provide neuroimaging evidence that the human dorsal frontoparietal network is involved in preparing and maintaining expectations for stimulus location and motion. ArticleCASPubMedPubMed Central Google Scholar
Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci.13, 1202–1226 (1993). ArticleCASPubMedPubMed Central Google Scholar
Nobre, A. C. et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain120, 515–533 (1997). ArticlePubMed Google Scholar
Vandenberghe, R. et al. Attention to one or two features in left and right visual field: a positron emission tomography study. J. Neurosci.17, 3739–3750 (1997). ArticleCASPubMedPubMed Central Google Scholar
Culham, J. C. et al. Cortical fMRI activation produced by attentive tracking of moving targets. J. Neurophysiol.80, 2657–2670 (1998). ArticleCASPubMed Google Scholar
Wojciulik, E. & Kanwisher, N. The generality of parietal involvement in visual attention. Neuron23, 747–764 (1999). ArticleCASPubMed Google Scholar
Gitelman, D. R. et al. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain122, 1093–1106 (1999). ArticlePubMed Google Scholar
Perry, R. J. & Zeki, S. The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain123, 2273–2288 (2000). ArticlePubMed Google Scholar
Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems. Proc. Natl Acad. Sci. USA95, 831–838 (1998). ArticleCASPubMedPubMed Central Google Scholar
Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res.41, 1359–1378 (2001). ArticleCASPubMed Google Scholar
Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia34, 475–483 (1996). ArticleCASPubMed Google Scholar
Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective attention. J. Neurophysiol.46, 755–772 (1981). ArticleCASPubMed Google Scholar
Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol.76, 2841–2852 (1996).Shows how preparatory signals for visual attention and eye movements are combined in LIP neurons. ArticleCASPubMed Google Scholar
Nakamura, K. & Colby, C. L. Visual, saccade-related, and cognitive activation of single neurons in monkey exstrastriate area V3A. J. Neurophysiol.84, 677–692 (2000). ArticleCASPubMed Google Scholar
Pashler, H. E. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1998). Google Scholar
Shulman, G. L., d'Avossa, G., Tansy, A. P. & Corbetta, M. Two attentional processes in the parietal lobe. Soc. Neurosci. Abstr.27, 722.20 (2001). Google Scholar
Serences, J. T., Schwarzbach, J. & Yantis, S. Control mechanisms of object-based visual attention in human cortex. Soc. Neurosci. Abstr.27, 348.9 (2001). Google Scholar
Le, T. H., Pardo, J. V. & Hu, X. 4T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J. Neurophysiol.79, 1535–1548 (1998). ArticleCASPubMed Google Scholar
Assad, J. A. & Maunsell, J. H. R. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature373, 518–521 (1995). ArticleCASPubMed Google Scholar
Toth, L. J. & Assad, J. A. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature415, 165–168 (2002). ArticleCASPubMed Google Scholar
Blake, R., Cepeda, N. J. & Hiris, E. Memory for visual motion. J. Exp. Psychol. Hum. Percept. Perform.23, 353–369 (1997). ArticleCASPubMed Google Scholar
Magnussen, S., Greenlee, M. W., Asplund, R. & Dyrnes, S. Stimulus-specific mechanisms of visual short-term memory. Vision Res.31, 1213–1219 (1991). ArticleCASPubMed Google Scholar
Awh, E. & Jonides, J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci.5, 119–126 (2001).Reviews the relationship between spatial working memory and attention. ArticleCASPubMed Google Scholar
Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature386, 608–611 (1997). ArticleCASPubMed Google Scholar
Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res.70, 216–220 (1988). CASPubMed Google Scholar
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol.65, 1464–1483 (1991). ArticleCASPubMed Google Scholar
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci.18, 193–222 (1995). ArticleCASPubMed Google Scholar
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci.24, 167–202 (2001).References40and41review the role of the prefrontal cortex in attention and executive control. ArticleCASPubMed Google Scholar
Savage-Rumbaugh, S., Shanker, S. G. & Talbot, J. T. Apes, Language, and the Human Mind (Oxford Univ. Press, New York, 1998). Google Scholar
Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature386, 167–170 (1997).Presents evidence of different preparatory response mechanisms for eye and arm in the macaque posterior parietal cortex. ArticleCASPubMed Google Scholar
Sakata, H., Taira, M., Kusunoki, M., Murata, A. & Tanaka, Y. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci.20, 350–357 (1997). ArticleCASPubMed Google Scholar
Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol.53, 603–635 (1985). ArticleCASPubMed Google Scholar
Wise, S. P., Weinrich, M. & Mauritz, K. H. Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Res.260, 301–305 (1983). ArticleCASPubMed Google Scholar
Kawashima, R., Roland, P. E. & O'Sullivan, B. Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. Cereb. Cortex5, 111–122 (1995). ArticleCASPubMed Google Scholar
Petit, L., Clark, V. P., Ingeholm, J. & Haxby, J. V. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J. Neurophysiol.77, 3386–3390 (1997). ArticleCASPubMed Google Scholar
Connolly, J. D., Goodale, M. A., Desouza, J. F., Menon, R. S. & Vilis, T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J. Neurophysiol.84, 1645–1655 (2000). ArticleCASPubMed Google Scholar
Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science288, 1656–1660 (2000). ArticleCASPubMed Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I. & Umiltá, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia25, 31–40 (1987). ArticleCASPubMed Google Scholar
Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron21, 761–773 (1998). ArticleCASPubMed Google Scholar
Nobre, A. C., Gitelman, D. R., Dias, E. C. & Mesulam, M. M. Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage11, 210–216 (2000). ArticleCASPubMed Google Scholar
Rushworth, M. F., Paus, T. & Sipila, P. K. Attention systems and the organization of the human parietal cortex. J. Neurosci.21, 5262–5271 (2001). ArticleCASPubMedPubMed Central Google Scholar
Allport, A., Styles, E. A. & Hsieh, S. in Attention and Performance XV (eds Umilta, C. & Moscovitch, M.) 421–452 (Erlbaum, Hillsdale, New Jersey, 1994). Google Scholar
Rogers, R. D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol.124, 207–231 (1995). Article Google Scholar
Meiran, N., Chorev, Z. & Sapir, A. Component processes in task switching. Cognit Psychol41, 211–253 (2000).References55–57describe psychological processes involved in task switching. ArticleCASPubMed Google Scholar
Fuster, J. M. in Cerebral Cortex (eds Jones, E. G. & Peters, A.) 151–177 (Plenum, New York, 1985). Google Scholar
Goldman-Rakic, P. S. in Handbook of Physiology, Section 1. Higher Functions of the Brain (eds Plum, F. & Mountcastle, V.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987). Google Scholar
Kimberg, D. Y., Aguirre, G. K. & D'Esposito, M. Modulation of task-related neural activity in task-switching: an fMRI study. Brain Res. Cogn. Brain Res.10, 189–196 (2000). ArticleCASPubMed Google Scholar
Sohn, M.-H., Ursu, S., Anderson, J. R., Stenger, V. A. & Carter, C. S. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc. Natl Acad. Sci. USA97, 13448–13453 (2000). ArticleCASPubMedPubMed Central Google Scholar
James, W. Principles of Psychology Vol. 1 (Henry-Holt & Co., New York, 1890). Google Scholar
Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev.96, 433–458 (1989). ArticleCASPubMed Google Scholar
Posner, M. I. & Cohen, Y. in Attention and Performance X (eds Bouman, H. & Bowhuis, D.) 55–66 (Erlbaum, Hillsdale, New Jersey, 1984). Google Scholar
Muller, H. J. & Rabbitt, M. A. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol.15, 315–330 (1989). CAS Google Scholar
Jonides, J. in Attention and Performance XI (eds Posner, M. I. & Marin, O.) 187–205 (Erlbaum, Hillsdale, New Jersey, 1981). Google Scholar
Yantis, S. & Jonides, J. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform.16, 121–134 (1990). ArticleCASPubMed Google Scholar
Folk, C. L., Remington, R. W. & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform.18, 1030–1044 (1992).References68and69discuss cognitive influences on stimulus-driven orienting. ArticleCASPubMed Google Scholar
Wolfe, J. M. Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev.1, 202–238 (1994). ArticleCASPubMed Google Scholar
Thompson, K. G., Bichot, N. P. & Schall, J. D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol.77, 1046–1050 (1997). ArticleCASPubMed Google Scholar
Bichot, N. P. & Schall, J. D. Effects of similarity and history on neural mechanisms of visual selection. Nature Neurosci.2, 549–554 (1999). ArticleCASPubMed Google Scholar
Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature391, 481–484 (1998).References71–73show that FEF and LIP neurons are modulated by stimulus salience and task relevance. ArticleCASPubMed Google Scholar
Corbetta, M., Shulman, G. L., Miezin, F. M. & Petersen, S. E. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science270, 802–805 (1995). ArticleCASPubMed Google Scholar
Leonards, U., Sunaert, S., Van Hecke, P. & Orban, G. A. Attention mechanisms in visual search — an fMRI study. J. Cogn. Neurosci.12, 61–75 (2000). ArticlePubMed Google Scholar
Shulman, G. L., Ollinger, J. M., Linenweber, M., Petersen, S. E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl Acad. Sci. USA98, 313–318 (2001). ArticleCASPubMed Google Scholar
Huettel, S. A., Guzeldere, G. & McCarthy, G. Dissociating the neural mechanisms of visual attention in change detection using functional MRI. J. Cogn. Neurosci.13, 1006–1018 (2001). ArticleCASPubMed Google Scholar
Beck, D. M., Rees, G., Frith, C. D. & Lavie, N. Neural correlates of change detection and change blindness. Nature Neurosci.4, 645–650 (2001).References76–78show that attentional search and target detection modulate the dorsal frontoparietal network and the visual cortex. ArticleCASPubMed Google Scholar
Arrington, C. M., Carr, T. H., Mayer, A. R. & Rao, S. M. Neural mechanisms of visual attention: object-based selection of a region in space. J. Cogn. Neurosci.12, 106–117 (2000). ArticlePubMed Google Scholar
Kirino, E., Belger, A., Goldman-Rakic, P. & McCarthy, G. Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J. Neurosci.20, 6612–6618 (2000). ArticleCASPubMedPubMed Central Google Scholar
Marois, R., Leung, H. C. & Gore, J. C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron25, 717–728 (2000). ArticleCASPubMed Google Scholar
Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci.3, 277–283 (2000).Presents evidence that the ventral frontoparietal network responds to stimulus changes in different sensory modalities. ArticleCASPubMed Google Scholar
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex11, 825–836 (2001). ArticleCASPubMed Google Scholar
Knight, R. T. & Scabini, D. Anatomic bases of event-related potentials and their relationship to novelty detection in humans. J. Clin. Neurophysiol.15, 3–13 (1998). ArticleCASPubMed Google Scholar
Daffner, K. R. et al. The central role of the prefrontal cortex in directing attention to novel events. Brain123, 927–939 (2000). ArticlePubMed Google Scholar
Wilkins, A. J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia25, 359–365 (1987). ArticleCASPubMed Google Scholar
Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage14, 1256–1267 (2001). ArticleCASPubMed Google Scholar
Serences, J., Shomstein, S., Leber, A., Yantis, S. & Egeth, H. E. Neural mechanisms of goal-directed and stimulus-driven attentional control. Psychon. Soc. Abstr.42, 135 (2001).
Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol.83, 3133–3139 (2000). ArticleCASPubMed Google Scholar
Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology38, 133–142 (2001). ArticleCASPubMed Google Scholar
Stuss, D. T. & Benson, D. F. The Frontal Lobes (Raven, New York, 1986). Google Scholar
Yokoyama, K., Jennings, R., Ackles, P., Hood, P. & Boller, F. Lack of heart rate changes during an attention-demanding task after right hemisphere lesions. Neurology37, 624–630 (1987). ArticleCASPubMed Google Scholar
Steinmetz, M. A. & Constantinidis, C. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb. Cortex5, 448–456 (1995). ArticleCASPubMed Google Scholar
Robinson, D. L., Bowman, E. M. & Kertzman, C. Covert orienting of attention in macaques. II. Contributions of parietal cortex. J. Neurophysiol.74, 698–721 (1995). ArticleCASPubMed Google Scholar
Constantinidis, C. & Steinmetz, M. A. Neuronal responses in area 7a to multiple stimulus displays. II. Responses are suppressed at the cued location. Cereb. Cortex11, 592–597 (2001). ArticleCASPubMed Google Scholar
Shulman, G. L. et al. Reactivation of networks involved in preparatory states. Cereb. Cortex (in the press).
Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci.13, 25–42 (1990). ArticleCASPubMed Google Scholar
Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci354, 1325–1346 (1999).Reviews the pathophysiology and anatomy of unilateral neglect. ArticleCASPubMedPubMed Central Google Scholar
Morrison, J. H. & Foote, S. L. Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in old and new world monkeys. J. Comp. Neurol.243, 117–128 (1986). ArticleCASPubMed Google Scholar
Oke, A., Keller, R., Mefford, I. & Adams, R. N. Lateralization of norepinephrine in human thalamus. Science200, 1411–1413 (1978). ArticleCASPubMed Google Scholar
Pardo, J. V., Fox, P. T. & Raichle, M. E. Localization of a human system for sustained attention by positron emission tomography. Nature349, 61–64 (1991). ArticleCASPubMed Google Scholar
Aston-Jones, G., Foote, S. L. & Bloom, F. E. in Frontiers of Clinical Neuroscience (ed. Ziegler, M. G.) (Williams & Wilkins, Baltimore, Maryland, 1984). Google Scholar
Dalley, J. W. et al. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J. Neurosci.21, 4908–4914 (2001).Provides a possible link between activity in ventral frontoparietal networks and noradrenaline projection systems. ArticleCASPubMedPubMed Central Google Scholar
Heilman, K. M., Watson, R. T. & Valenstein, E. in Clinical Neuropsychology (eds Heilman, K. M. & Valenstein, E.) 243–293 (Oxford Univ. Press, New York, 1985). Google Scholar
Robertson, I. H., Mattingley, J. B., Rorden, C. & Driver, J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature395, 169–172 (1998). ArticleCASPubMed Google Scholar
Corbetta, M., Kincade, M. J. & Shulman, G. L. in The Cognitive and Neural Basis of Spatial Neglect (eds Karnath, H. O., Milner, D. & Vallar, G.) (Oxford Univ. Press, Oxford, in the press).
Vallar, G. & Perani, D. in Neurophysiological and Neuropsychological Aspects of Spatial Neglect (ed. Jeannerod, M.) 235–258 (Elsevier, North-Holland, Amsterdam, 1987). Book Google Scholar
Karnath, H. O., Ferber, S. & Himmelbach, M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature411, 950–953 (2001). ArticleCASPubMed Google Scholar
Husain, M. & Kennard, C. Visual neglect associated with frontal lobe infarction. J. Neurol.243, 652–657 (1996). ArticleCASPubMed Google Scholar
Stone, S. P., Patel, P., Greenwood, R. J. & Halligan, P. W. Measuring visual neglect in acute stroke and predicting its recovery: the visual neglect recovery index. J. Neurol. Neurosurg. Psychiatry55, 431–436 (1992). ArticleCASPubMedPubMed Central Google Scholar
Weinberg, J. et al. Visual scanning training effects on reading-related tasks in acquired brain-damage. Arch. Phys. Med. Rehabil.58, 479–486 (1977). CASPubMed Google Scholar
Posner, M. I., Walker, J. A., Friedrich, F. J. & Rafal, R. D. Effects of parietal injury on covert orienting of attention. J. Neurosci.4, 1863–1874 (1984). ArticleCASPubMedPubMed Central Google Scholar
Smania, N. et al. The spatial distribution of visual attention in hemineglect. Brain121, 1759–1770 (1998). ArticlePubMed Google Scholar
Mattingley, J. B., Husain, M., Rorden, C., Kennard, C. & Driver, J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature392, 179–182 (1998). ArticleCASPubMed Google Scholar
Kinsbourne, M. in Unilateral Neglect: Clinical and Experimental Studies (eds Robertson, I. H. & Marshall, J.) 63–86 (Erlbaum, Hillsdale, New Jersey, 1993). Google Scholar
Witte, E. A., Villareal, M. & Marrocco, R. T. Visual orienting and alerting in rhesus monkeys: comparison with humans. Behav Brain Res82, 103–112 (1996). ArticleCASPubMed Google Scholar
Drury, H. A. et al. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J. Cogn. Neurosci.8, 1–28 (1996). ArticleCASPubMed Google Scholar
Thompson, K. G., Bichot, N. P. & Schall, J. D. in Visual Attention and Cortical Circuits (eds Braun, J., Koch, C. & Davis, J. L.) (MIT Press, Cambridge, Massachusetts, 2001). Google Scholar