Left–right asymmetry in the nervous system: the Caenorhabditis elegans model (original) (raw)

References

  1. Ludwig, W. Das Rechts–Links Problem im Tierreich und beim Menschen (Springer, Berlin, 1932).An excellent monograph that describes anatomical L–R asymmetry across the animal kingdom, the plant kingdom and the inorganic world. It provides several conceptual frameworks of symmetry in nature, in addition to an amusing reference to the translation of L–R concepts into the good–bad classification of folk myths. This book, which is unfortunately available only in German, is an invaluable introduction to and resource for the L–R asymmetry field.
    Book Google Scholar
  2. Ramsdell, A. F. & Yost, H. J. Molecular mechanisms of vertebrate left–right development. Trends Genet. 14, 459–465 (1998).
    Article CAS PubMed Google Scholar
  3. Mercola, M. & Levin, M. Left–right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 779–805 (2001).
    Article CAS PubMed Google Scholar
  4. Wood, W. B. Left–right asymmetry in animal development. Annu. Rev. Cell Dev. Biol. 13, 53–82 (1997).
    Article CAS PubMed Google Scholar
  5. Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left–right asymmetry. Nature Rev. Genet. 3, 103–113 (2002).
    Article CAS PubMed Google Scholar
  6. Burdine, R. D. & Schier, A. F. Conserved and divergent mechanisms in left–right axis formation. Genes Dev. 14, 763–776 (2000).
    CAS PubMed Google Scholar
  7. Davidson, R. J. & Hugdahl, K. (eds) Brain Asymmetry (MIT Press, Cambridge, Massachusetts, 1994).
    Google Scholar
  8. Glick, S. D. & Ross, D. A. Lateralization of function in the rat brain. Trends Neurosci. 4, 196–199 (1981).
    Article Google Scholar
  9. Miklosi, A., Andrew, R. J. & Savage, H. Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol. Behav. 63, 127–135 (1997).
    Article CAS PubMed Google Scholar
  10. Wes, P. D. & Bargmann, C. I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698–701 (2001).
    Article CAS PubMed Google Scholar
  11. Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J. & Lockery, S. R. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694–698 (2001).
    Article CAS PubMed Google Scholar
  12. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).This paper documents the heroic efforts that were made in elucidating the complete neuronal wiring diagram of a metazoan organism. It is the first and still the only report of its kind, on which several generations of C. elegans researchers have now feasted.
    Article CAS Google Scholar
  13. Bowerman, B., Tax, F. E., Thomas, J. H. & Priess, J. R. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. Development 116, 1113–1122 (1992).
    CAS PubMed Google Scholar
  14. Hermann, G. J., Leung, B. & Priess, J. R. Left–right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. Development 127, 3429–3440 (2000).
    CAS PubMed Google Scholar
  15. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).
    Article CAS PubMed Google Scholar
  16. Sulston, J. E. Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 443–452 (1983).
    Article PubMed Google Scholar
  17. Schnabel, R., Hutter, H., Moerman, D. & Schnabel, H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol. 184, 234–265 (1997).
    Article CAS PubMed Google Scholar
  18. Schnabel, R. Pattern formation: regional specification in the early C. elegans embryo. Bioessays 18, 591–594 (1996).
    Article CAS PubMed Google Scholar
  19. Lin, R., Hill, R. J. & Priess, J. R. POP-1 and anterior–posterior fate decisions in C. elegans embryos. Cell 92, 229–239 (1998).
    Article CAS PubMed Google Scholar
  20. Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).
    Article CAS PubMed Google Scholar
  21. Troemel, E. R., Sagasti, A. & Bargmann, C. I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99, 387–398 (1999).
    Article CAS PubMed Google Scholar
  22. Graham, J. H., Freeman, D. C. & Emlen, J. M. Antisymmetry, directional asymmetry and dynamic morphogenesis. Genetica 89, 121–137 (1993).
    Article Google Scholar
  23. Palmer, A. R. From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proc. Natl Acad. Sci. USA 93, 14279–14286 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  24. Sagasti, A. et al. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105, 221–232 (2001).
    Article CAS PubMed Google Scholar
  25. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl Acad. Sci. USA 70, 817–821 (1973).
    Article CAS PubMed PubMed Central Google Scholar
  26. Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742 (1991).
    Article CAS PubMed Google Scholar
  27. Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384–3387 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  28. Hobert, O., Tessmar, K. & Ruvkun, G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 126, 1547–1562 (1999).
    CAS PubMed Google Scholar
  29. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).
    Article CAS PubMed Google Scholar
  30. Salser, S. J. & Kenyon, C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature 355, 255–258 (1992).
    Article CAS PubMed Google Scholar
  31. Harris, J., Honigberg, L., Robinson, N. & Kenyon, C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 122, 3117–3131 (1996).
    CAS PubMed Google Scholar
  32. Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. & Kenyon, C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126, 37–49 (1999).
    CAS PubMed Google Scholar
  33. Whangbo, J. & Kenyon, C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol. Cell 4, 851–858 (1999).
    Article CAS PubMed Google Scholar
  34. Honigberg, L. & Kenyon, C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development 127, 4655–4668 (2000).
    CAS PubMed Google Scholar
  35. Delattre, M. & Felix, M. A. Development and evolution of a variable left–right asymmetry in nematodes: the handedness of P11/P12 migration. Dev. Biol. 232, 362–371 (2001).
    Article CAS PubMed Google Scholar
  36. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).
    Article CAS PubMed Google Scholar
  37. Goldschmidt, R. Das Nervensystem von Ascaris lumbricoides und megalocephala. II. Z. Wiss. Zool. 92, 306–357 (1909).
    Google Scholar
  38. Chitwood, B. G. & Chitwood, M. B. Introduction to Nematology (University Park Press, Baltimore, 1974).
    Google Scholar
  39. Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).
    Article CAS PubMed Google Scholar
  40. Aurelio, O., Hall, D. H. & Hobert, O. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 295, 686–690 (2002).
    Article CAS PubMed Google Scholar
  41. Wightman, B., Baran, R. & Garriga, G. Genes that guide growth cones along the C. elegans ventral nerve cord. Development 124, 2571–2580 (1997).
    CAS PubMed Google Scholar
  42. Zallen, J. A., Kirch, S. A. & Bargmann, C. I. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126, 3679–3692 (1999).
    CAS PubMed Google Scholar
  43. Kim, S. & Wadsworth, W. G. Positioning of longitudinal nerves in C. elegans by nidogen. Science 288, 150–154 (2000).
    Article CAS PubMed Google Scholar
  44. Wood, W. B. Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining cell fates. Nature 349, 536–538 (1991).
    Article CAS PubMed Google Scholar
  45. Hutter, H. & Schnabel, R. glp-1 and inductions establishing embryonic axes in C. elegans. Development 120, 2051–2064 (1994).
    CAS PubMed Google Scholar
  46. Hutter, H. & Schnabel, R. Establishment of left–right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. Development 121, 3417–3424 (1995).
    CAS PubMed Google Scholar
  47. Wood, W. B. & Edgar, L. G. Patterning in the C. elegans embryo. Trends Genet. 10, 49–54 (1994).
    Article CAS PubMed Google Scholar
  48. Schnabel, R. & Priess, J. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 361–382 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).
    Google Scholar
  49. Schnabel, R. Why does a nematode have an invariant cell lineage. Semin. Cell Dev. Biol. 8, 341–349 (1997).
    Article CAS PubMed Google Scholar
  50. Hayashi, T. & Murakami, R. Left–right asymmetry in Drosophila melanogaster gut development. Dev. Growth Differ. 43, 239–246 (2001).
    Article CAS PubMed Google Scholar
  51. Blair, S. S., Martindale, M. Q. & Shankland, M. Interactions between adjacent ganglia bring about the bilaterally alternating differentiation of RAS and CAS neurons in the leech nerve cord. J. Neurosci. 10, 3183–3193 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  52. Martindale, M. Q. & Shankland, M. Neuronal competition determines the spatial pattern of neuropeptide expression by identified neurons of the leech. Dev. Biol. 139, 210–226 (1990).
    Article CAS PubMed Google Scholar
  53. Shankland, M. & Martindale, M. Q. Segmental specificity and lateral asymmetry in the differentiation of developmentally homologous neurons during leech embryogenesis. Dev. Biol. 135, 431–448 (1989).
    Article CAS PubMed Google Scholar
  54. Weisblat, D. A. & Shankland, M. Cell lineage and segmentation in the leech. Phil. Trans. R. Soc. Lond. B 312, 39–56 (1985).
    Article CAS Google Scholar
  55. LeMay, M. Morphological aspects of human brain asymmetry. Trends Neurosci. 5, 273–275 (1982).
    Article Google Scholar
  56. Geschwind, N. & Levitsky, W. Human brain: left–right asymmetries in temporal speech region. Science 161, 186–187 (1968).
    Article CAS PubMed Google Scholar
  57. Galaburda, A. M. in Brain Asymmetry (eds Davidson, R. J. & Hugdahl, K.) 51–73 (MIT Press, Cambridge, Massachusetts, 1994).
    Google Scholar
  58. Chi, J. G., Dooling, E. C. & Gilles, F. H. Left–right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol. 34, 346–348 (1977).
    Article CAS PubMed Google Scholar
  59. Galaburda, A. M. in Biological Asymmetry and Handedness (ed. Wolpert, L.) 219–226 (Wiley, West Sussex, 1991).
    Google Scholar
  60. Glick, S. D., Ross, D. A. & Hough, L. B. Lateral asymmetry of neurotransmitters in human brain. Brain Res. 234, 53–63 (1982).
    Article CAS PubMed Google Scholar
  61. Kennedy, D. N. et al. Structural and functional brain asymmetries in human situs inversus totalis. Neurology 53, 1260–1265 (1999).
    Article CAS PubMed Google Scholar
  62. Concha, M. L. & Wilson, S. W. Asymmetry in the epithalamus of vertebrates. J. Anat. 199, 63–84 (2001).
    Article CAS PubMed Google Scholar
  63. Concha, M. L., Burdine, R. D., Russell, C., Schier, A. F. & Wilson, S. W. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28, 399–409 (2000).
    Article CAS PubMed Google Scholar
  64. Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left–right asymmetry. Dev. Biol. 199, 261–272 (1998).
    Article CAS PubMed Google Scholar
  65. Sampath, K. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189 (1998).
    Article CAS PubMed Google Scholar
  66. Cheng, A. M., Thisse, B., Thisse, C. & Wright, C. V. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L–R axis development in Xenopus. Development 127, 1049–1061 (2000).
    CAS PubMed Google Scholar
  67. Bisgrove, B. W., Essner, J. J. & Yost, H. J. Multiple pathways in the midline regulate concordant brain, heart and gut left–right asymmetry. Development 127, 3567–3579 (2000).
    CAS PubMed Google Scholar
  68. Liang, J. O. et al. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127, 5101–5112 (2000).
    CAS PubMed Google Scholar
  69. Essner, J. J., Branford, W. W., Zhang, J. & Yost, H. J. Mesendoderm and left–right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081–1093 (2000).
    CAS PubMed Google Scholar
  70. Ishikawa, Y. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22, 487–495 (2000).
    Article CAS PubMed Google Scholar
  71. Brown, N. A., McCarthy, A. & Wolpert, L. Development of handed body asymmetry in mammals. Ciba Found. Symp. 162, 182–96; discussion 196–201 (1991).
    CAS PubMed Google Scholar
  72. Rein, K., Zockler, M., Mader, M. T., Grubel, C. & Heisenberg, M. The Drosophila standard brain. Curr. Biol. 12, 227–231 (2002).
    Article CAS PubMed Google Scholar
  73. Shankland, M., Martindale, M. Q., Nardelli-Haefliger, D., Baxter, E. & Price, D. J. Origin of segmental identity in the development of the leech nervous system. Development Suppl. 2, 29–38 (1991).

Download references