Excitatory actions of gaba during development: the nature of the nurture (original) (raw)
References
Ben Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.)416, 303–325 (1989).A description of the three 'rules': GABA is excitatory then inhibitory; GABA-synapse formation precedes glutamatergic-synapse formation; and GDPs are present in neonatal hippocampal neurons. These conclusions are based on intracellular recordings from a large sample of pyramidal neurons from birth to P14. CAS Google Scholar
Obata, K., Oide, M. & Tanaka, H. Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res.144, 179–184 (1978). CASPubMed Google Scholar
Leinekugel, X., Tseeb, V., Ben Ari, Y. & Bregestovski, P. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond.)487, 319–329 (1995). CAS Google Scholar
Khazipov, R., Leinekugel, X., Khalilov, I., Gaiarsa, J. L. & Ben Ari, Y. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J. Physiol. (Lond.)498, 763–772 (1997). CAS Google Scholar
Leinekugel, X., Medina, I., Khalilov, I., Ben Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron18, 243–255 (1997).A demonstration of the synergistic actions of GABA and NMDA receptors. Using confocal microscopy to visualize calcium changes, together with single-NMDA-channel recordings, the authors show that GABA alters the affinity of the NMDA channel for magnesium, leading to more calcium influx in immature neurons. CASPubMed Google Scholar
Leinekugel, X. et al. GABA is the principal fast-acting excitatory transmitter in the neonatal brain. Adv. Neurol.79, 189–201 (1999). CASPubMed Google Scholar
Ganguly, K., Schinder, A. F., Wong, S. T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell105, 521–532 (2001). CASPubMed Google Scholar
Hollrigel, G. S., Ross, S. T. & Soltesz, I. Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus. J. Neurophysiol.80, 2340–2351 (1998). CASPubMed Google Scholar
Berninger, B. et al. GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development121, 2327–2335 (1995).An illustration of the positive loop: GABA activates BDNF, which enhances GABA actions in immature neurons. The shift from excitation to inhibition correlates with the effects on BDNF expression. CASPubMed Google Scholar
Gao, X. B. & van den Pol, A. N. GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol.85, 425–434 (2001).The blockade of GABA receptors reduces more efficiently the ongoing activity of hypothalamic neurons than does NMDA- or AMPA-receptor blockade. Perforated-patch recordings show the early excitatory actions of GABA in a developing circuit. CASPubMed Google Scholar
Maric, D. et al. GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl− channels. J. Neurosci.21, 2343–2360 (2001). CASPubMedPubMed Central Google Scholar
Barker, J. L. et al. GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol.5, 305–322 (1998).A nice review of the plethora of actions of GABA during development. CASPubMed Google Scholar
Owens, D. F., Boyce, L. H., Davis, M. B. & Kriegstein, A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci.16, 6414–6423 (1996). CASPubMedPubMed Central Google Scholar
Dammerman, R. S., Flint, A. C., Noctor, S. & Kriegstein, A. R. An excitatory GABAergic plexus in developing neocortical layer 1. J. Neurophysiol.84, 428–434 (2000).Electrical stimulation of neocortical layer 1 results in a GABAA-receptor-mediated PSC in pyramidal neurons. Perforated-patch recording shows that the GABA-releasing layer 1 synapse is excitatory and can trigger action potentials in cortical neurons. CASPubMed Google Scholar
Luhmann, H. J. & Prince, D. A. Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol.65, 247–263 (1991). CASPubMed Google Scholar
Chen, G., Trombley, P. Q. & van den Pol, A. N. Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.)494, 451–464 (1996). CAS Google Scholar
Wang, Y. F., Gao, X. B. & van den Pol, A. N. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons. J. Neurophysiol.86, 1252–1265 (2001). CASPubMed Google Scholar
Obrietan, K. & van den Pol, A. GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development. J. Neurophysiol.82, 94–102 (1999). CASPubMed Google Scholar
Vinay, L. & Clarac, F. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat. Neuroscience90, 165–176 (1999). CASPubMed Google Scholar
Serafini, R., Valeyev, A. Y., Barker, J. L. & Poulter, M. O. Depolarizing GABA-activated Cl− channels in embryonic rat spinal and olfactory bulb cells. J. Physiol. (Lond.)488, 371–386 (1995).In dissociated embryonic spinal cord neurons, micromolar GABA activates chloride channels, which, when open, effectively depolarize cells by ∼30 mV. In cell-attached recordings, opening of a single GABA channel can trigger action potentials. CAS Google Scholar
Wang, J., Reichling, D. B., Kyrozis, A. & MacDermott, A. B. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur. J. Neurosci.6, 1275–1280 (1994). CASPubMed Google Scholar
Reichling, D. B., Kyrozis, A., Wang, J. & MacDermott, A. B. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J. Physiol. (Lond.)476, 411–421 (1994). CAS Google Scholar
Ye, J. Physiology and pharmacology of native glycine receptors in developing rat ventral tegmental area neurons. Brain Res.862, 74–82 (2000). CASPubMed Google Scholar
Eilers, J., Plant, T. D., Marandi, N. & Konnerth, A. GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J. Physiol. (Lond.)536, 429–437 (2001). CAS Google Scholar
Yuste, R. & Katz, L. C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron6, 333–344 (1991). CASPubMed Google Scholar
Ehrlich, I., Lohrke, S. & Friauf, E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl− regulation. J. Physiol. (Lond.)520, 121–137 (1999). CAS Google Scholar
Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J. Neurosci.19, 2843–2851 (1999). CASPubMedPubMed Central Google Scholar
Wu, W. L., Ziskind-Conhaim, L. & Sweet, M. A. Early development of glycine- and GABA-mediated synapses in rat spinal cord. J. Neurosci.12, 3935–3945 (1992). CASPubMedPubMed Central Google Scholar
Reith, C. A. & Sillar, K. T. Development and role of GABAA receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles. J. Neurophysiol.82, 3175–3187 (1999). CASPubMed Google Scholar
Rohrbough, J. & Spitzer, N. C. Regulation of intracellular Cl− levels by Na+-dependent Cl− cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci.16, 82–91 (1996). CASPubMedPubMed Central Google Scholar
Saint-Amant, L. & Drapeau, P. Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J. Neurosci.20, 3964–3972 (2000). CASPubMedPubMed Central Google Scholar
Lu, T. & Trussell, L. O. Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. J. Physiol. (Lond.)535, 125–131 (2001). CAS Google Scholar
Sernagor, E. & Grzywacz, N. M. Spontaneous activity in developing turtle retinal ganglion cells: pharmacological studies. J. Neurosci.19, 3874–3887 (1999). CASPubMedPubMed Central Google Scholar
Sernagor, E. & Mehta, V. The role of early neural activity in the maturation of turtle retinal function. J. Anat.199, 375–383 (2001). CASPubMedPubMed Central Google Scholar
Ochi, S. et al. Transient presence of GABA in astrocytes of the developing optic nerve. Glia9, 188–198 (1993). CASPubMed Google Scholar
Sakatani, K., Black, J. A. & Kocsis, J. D. Transient presence and functional interaction of endogenous GABA and GABAA receptors in developing rat optic nerve. Proc. R. Soc. Lond. B247, 155–161 (1992). CAS Google Scholar
Kandler, K. & Friauf, E. Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci.15, 6890–6904 (1995). CASPubMedPubMed Central Google Scholar
Fukuda, A. et al. Simultaneous optical imaging of intracellular Cl− in neurons in different layers of rat neocortical slices: advantages and limitations. Neurosci. Res.32, 363–371 (1998). CASPubMed Google Scholar
Kuner, T. & Augustine, G. J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron27, 447–459 (2000). CASPubMed Google Scholar
Barry, P. H. & Lynch, J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membr. Biol.121, 101–117 (1991). CASPubMed Google Scholar
Delpire, E. Cation–chloride cotransporters in neuronal communication. News Physiol. Sci.15, 309–312 (2000). CASPubMed Google Scholar
Fukuda, A. et al. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl− gradient in neonatal rat neocortex. J. Neurophysiol.79, 439–446 (1998). CASPubMed Google Scholar
Yamada, J., Okabe, A., Toyoda, H. & Fukuda, A. Development of GABAergic responses and Cl− homeostasis are regulated by differential expression of cation–Cl− cotransporters: gramicidine-perforated patch clamp and single cell multiplex RT-PCR study. Soc. Neurosci. Abstr. (2002).
Rivera, C. et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature397, 251–255 (1999). CASPubMed Google Scholar
Staley, K. & Smith, R. A new form of feedback at the GABAA receptor. Nature Neurosci.4, 674–676 (2001). CASPubMed Google Scholar
Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? Nature Rev. Neurosci.3, 715–727 (2002). CAS Google Scholar
Luthi, A., Schwyzer, L., Mateos, J. M., Gahwiler, B. H. & McKinney, R. A. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nature Neurosci.4, 1102–1107 (2001). CASPubMed Google Scholar
McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nature Neurosci.2, 44–49 (1999). CASPubMed Google Scholar
Cherubini, E., Martina, M., Scinacalpore, M. & Strata, F. GABA excites neonatal neurones through bicuculline sensitive and insensitive chloride channels. Perspect. Dev. Neurobiol.5, 289–304 (1998). CASPubMed Google Scholar
Khalilov, I., Dzhala, V., Ben Ari, Y. & Khazipov, R. Dual role of GABA in the neonatal rat hippocampus. Dev. Neurosci.21, 310–319 (1999). CASPubMed Google Scholar
Verheugen, J. A., Fricker, D. & Miles, R. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci.19, 2546–2555 (1999). CASPubMedPubMed Central Google Scholar
Leinekugel, X., Tseeb, V., Ben Ari, Y. & Bregestovski, P. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond.)487, 319–329 (1995). CAS Google Scholar
Gao, X. B., Chen, G. & van den Pol, A. N. GABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons. J. Neurophysiol.79, 716–726 (1998). CASPubMed Google Scholar
Ben Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J. L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. Trends Neurosci.20, 523–529 (1997). CASPubMed Google Scholar
Khazipov, R., Ragozzino, D. & Bregestovski, P. Kinetics and Mg2+ block of _N_-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience69, 1057–1065 (1995). CASPubMed Google Scholar
Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R. & Monyer, H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci.17, 2469–2476 (1997). CASPubMedPubMed Central Google Scholar
Hutcheon, B., Morley, P. & Poulter, M. O. Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J. Physiol. (Lond.)522, 3–17 (2000). CAS Google Scholar
Edwards, D. H. Mechanisms of depolarizing inhibition at the crayfish giant motor synapse. I. Electrophysiology. J. Neurophysiol.64, 532–540 (1990). CASPubMed Google Scholar
Zhang, S. J. & Jackson, M. B. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary. J. Physiol. (Lond.)483, 583–595 (1995). CAS Google Scholar
Jackson, M. B. & Zhang, S. J. Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. J. Physiol. (Lond.)483, 597–611 (1995). CAS Google Scholar
Staley, K. J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol.68, 197–212 (1992). CASPubMed Google Scholar
Ziskind-Conhaim, L. Physiological functions of GABA-induced depolarizations in the developing rat spinal cord. Perspect. Dev. Neurobiol.5, 279–287 (1998). CASPubMed Google Scholar
Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci.19, 10372–10382 (1999). CASPubMedPubMed Central Google Scholar
Khazipov, R. et al. Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci.21, 9770–9781 (2001).This paper describes the first recordings from primate central neuronsin utero. The GABA–glutamate sequence is also observed in primates, and the shift takes place a few weeks after mid-gestation. The article includes a quantitative analysis of dendritic growth, spine formation, and the sequential establishment of axons, apical and basal dendrites. GDPs provide all the activity until a few days before birth. At this stage, pyramidal neurons have as many as 7,000 spines, which can form elaborate patterns. CASPubMedPubMed Central Google Scholar
Rozenberg, F., Robain, O., Jardin, L. & Ben Ari, Y. Distribution of GABAergic neurons in late fetal and early postnatal rat hippocampus. Brain Res. Dev. Brain Res.50, 177–187 (1989). CASPubMed Google Scholar
Dupuy, S. T. & Houser, C. R. Developmental changes in GABA neurons of the rat dentate gyrus: an in situ hybridization and birthdating study. J. Comp. Neurol.389, 402–418 (1997). CASPubMed Google Scholar
Super, H. & Soriano, E. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. J. Comp. Neurol.344, 101–120 (1994). CASPubMed Google Scholar
Diabira, D., Hennou, S., Chevassus-Au-Louis, N., Ben Ari, Y. & Gozlan, H. Late embryonic expression of AMPA receptor function in the CA1 region of the intact hippocampus in vitro. Eur. J. Neurosci.11, 4015–4023 (1999). CASPubMed Google Scholar
Soriano, E., Del Rio, J. A., Martinez, A. & Super, H. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J. Comp. Neurol.342, 571–595 (1994). CASPubMed Google Scholar
Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci.2, 780–790 (2001).An excellent review of the tangential migration of interneurons and their underlying mechanisms and possible implications for the construction of a cortical network. CAS Google Scholar
Hennou, S., Khalilov, I., Diabira, D., Ben-Ari, Y. & Gozlan, H. Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur. J. Neurosci.16, 197–208 (2002).This paper describes the first recordings and reconstructions of hippocampal interneuronsin uteroand in early postnatal rats. It shows that the GABA–glutamate sequence also takes place in interneurons, but at an earlier stage than in pyramidal cells. PubMed Google Scholar
Gubellini, P., Ben Ari, Y. & Gaiarsa, J. L. Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus. Eur. J. Neurosci.14, 1937–1946 (2001). CASPubMed Google Scholar
Caillard, O., Ben Ari, Y. & Gaiarsa, J. L. Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci.19, 7568–7577 (1999). CASPubMedPubMed Central Google Scholar
Caillard, O., Ben Ari, Y. & Gaiarsa, J. L. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J. Physiol. (Lond.)518, 109–119 (1999). CAS Google Scholar
Leinekugel, X. et al. Correlated bursts of activity in the neonatal hippocampus in vivo. Science296, 2049–2052 (2002). CASPubMed Google Scholar
Khalilov, I. et al. A novel in vitro preparation: the intact hippocampal formation. Neuron19, 743–749 (1997). CASPubMed Google Scholar
Leinekugel, X., Khalilov, I., Ben Ari, Y. & Khazipov, R. Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J. Neurosci.18, 6349–6357 (1998). CASPubMedPubMed Central Google Scholar
Menendez de la Prida, L., Bolea, S. & Sanchez-Andres, J. V. Origin of the synchronized network activity in the rabbit developing hippocampus. Eur. J. Neurosci.10, 899–906 (1998). CASPubMed Google Scholar
Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron14, 7–17 (1995). CASPubMed Google Scholar
Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nature Neurosci.3, 452–459 (2000). CASPubMed Google Scholar
Fellippa-Marques, S., Vinay, L. & Clarac, F. Spontaneous and locomotor-related GABAergic input onto primary afferents in the neonatal rat. Eur. J. Neurosci.12, 155–164 (2000). CASPubMed Google Scholar
O'Donovan, M. J. & Landmesser, L. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo. J. Neurosci.7, 3256–3264 (1987). CASPubMedPubMed Central Google Scholar
O'Donovan, M. et al. Development of spinal motor networks in the chick embryo. J. Exp. Zool.261, 261–273 (1992). CASPubMed Google Scholar
Gu, X. & Spitzer, N. C. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients. Dev. Neurosci.19, 33–41 (1997). CASPubMed Google Scholar
O'Donovan, M. J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol.9, 94–104 (1999). CASPubMed Google Scholar
Feller, M. B., Butts, D. A., Aaron, H. L., Rokhsar, D. S. & Shatz, C. J. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron19, 293–306 (1997). CASPubMed Google Scholar
Caillard, O., McLean, H. A., Ben Ari, Y. & Gaiarsa, J. L. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol.79, 1341–1348 (1998). CASPubMed Google Scholar
McLean, H. A., Caillard, O., Khazipov, R., Ben Ari, Y. & Gaiarsa, J. L. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. J. Neurophysiol.76, 1036–1046 (1996). CASPubMed Google Scholar
Fukuda, A., Mody, I. & Prince, D. A. Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J. Neurophysiol.70, 448–452 (1993). CASPubMed Google Scholar
Dreyfus-Brisac, C. & Minkowski, A. Low birth weight and EEG maturation. Electroencephalogr. Clin. Neurophysiol.26, 638 (1969). CASPubMed Google Scholar
Ellingson, R. J. & Peters, J. F. Development of EEG and daytime sleep patterns in normal full-term infant during the first 3 months of life: longitudinal observations. Electroencephalogr. Clin. Neurophysiol.49, 112–124 (1980). CASPubMed Google Scholar
Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron19, 801–812 (1997). CASPubMed Google Scholar
Hubner, C. A. et al. Disruption of KCC2 reveals an essential role of K–Cl cotransport already in early synaptic inhibition. Neuron30, 515–524 (2001). CASPubMed Google Scholar
Woo, N. S. et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K–Cl cotransporter gene. Hippocampus12, 258–268 (2002). CASPubMed Google Scholar
Anderson, S. A. et al. Mutations of the homeobox genes DLX-1 and DLX-2 disrupt the subventricular zone and differentiation of late born striatal neurons. Neuron19, 27–37 (1997). CASPubMed Google Scholar
Guillemot, F. & Joyner, A. L. Dynamic expression of the Achaete scute homolog Mash 1 in the developing nervous system. Mech. Dev.42, 171–185 (1993). CASPubMed Google Scholar
Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron28, 727–740 (2000). CASPubMed Google Scholar
Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol.12, 26–34 (2002). CASPubMed Google Scholar
Parra, P., Gulyas, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron20, 983–993 (1998). CASPubMed Google Scholar
Hume, J. R., Duan, D., Collier, M. L., Yamazaki, J. & Horowitz, B. Anion transport in heart. Physiol Rev.80, 31–81 (2000). CASPubMed Google Scholar
Baumgarten, C. M. & Fozzard, H. A. Intracellular chloride activity in mammalian ventricular muscle. Am. J. Physiol.241, C121–C129 (1981). CASPubMed Google Scholar
Liu, S., Jacob, R., Piwnica-Worms, D. & Lieberman, M. (Na + K + 2Cl) cotransport in cultured embryonic chick heart cells. Am. J. Physiol.253, C721–C730 (1987). CASPubMed Google Scholar
Bowery, N. G. & Brown, D. A. Depolarizing actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia. Br. J. Pharmacol.50, 205–218 (1974). CASPubMedPubMed Central Google Scholar
Lorsignol, A., Taupignon, A. & Dufy, B. Short applications of γ-aminobutyric acid increase intracellular calcium concentrations in single identified rat lactotrophs. Neuroendocrinology60, 389–399 (1994). CASPubMed Google Scholar
Garcia, L., Rigoulet, M., Georgescauld, D., Dufy, B. & Sartor, P. Regulation of intracellular chloride concentration in rat lactotrophs: possible role of mitochondria. FEBS Lett.400, 113–118 (1997). CASPubMed Google Scholar
Krnjevic, K., Cherubini, E. & Ben-Ari, Y. Anoxia on slow inward currents of immature hippocampal neurons. J. Neurophysiol.62, 896–906 (1989). CASPubMed Google Scholar
Ben Ari, Y. Developing networks play a similar melody. Trends Neurosci.24, 353–360 (2001). CASPubMed Google Scholar
Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus6, 347–470 (1996). CASPubMed Google Scholar
Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci.15, 47–60 (1995). CASPubMedPubMed Central Google Scholar
Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science287, 864–869 (2000).In this study, knockout of Munc18 abolished vesicular release and was lethal. However, the principal brain structures — the neocortex, thalamus, hippocampus and so on — developed, indicating that vesicular release is not required for the correct construction of brain structures. CASPubMed Google Scholar
Vassilatis, D. K. et al. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J. Mol. Evol.44, 501–508 (1997). CASPubMed Google Scholar
Wolff, M. A. & Wingate, V. P. Characterization and comparative pharmacological studies of a functional γ-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae:Lepidoptera). Invert. Neurosci.3, 305–315 (1998). CASPubMed Google Scholar
Shelp, B. J., Bown, A. W. & McLean, M. D. Metabolism and functions of γ-aminobutyric acid. Trends Plant Sci.4, 446–452 (1999). CASPubMed Google Scholar
Breitkreuz, K. E., Shelp, B. J., Fischer, W. N., Schwacke, R. & Rentsch, D. Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett.450, 280–284 (1999). CASPubMed Google Scholar
Kathiresan, A., Tung, P., Chinnappa, C. C. & Reid, D. M. γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol.115, 129–135 (1997). CASPubMedPubMed Central Google Scholar
Gallego, P. P., Whotton, L., Picton, S., Grierson, D. & Gray, J. E. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Mol. Biol.27, 1143–1151 (1995). CASPubMed Google Scholar
Galleschi, L., Floris, C. & Cozzani, I. Variation of glutamate decarboxylase activity and γ-amino butyric acid content of wheat embryos during ripening of seeds. Experientia33, 1575–1576 (1977). CASPubMed Google Scholar
Perovic, S., Krasko, A., Prokic, I., Muller, I. M. & Muller, W. E. Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res.296, 395–404 (1999). CASPubMed Google Scholar
Wegerhoff, R. GABA and serotonin immunoreactivity during postembryonic brain development in the beetle Tenebrio molitor. Microsc. Res. Tech.45, 154–164 (1999). CASPubMed Google Scholar
Lee, D. & O'Dowd, D. K. Fast excitatory synaptic transmission mediated by nicotinic acetylcholine receptors in Drosophila neurons. J. Neurosci.19, 5311–5321 (1999). CASPubMedPubMed Central Google Scholar
Delgado, R., Barla, R., Latorre, R. & Labarca, P. l-Glutamate activates excitatory and inhibitory channels in Drosophila larval muscle. FEBS Lett.243, 337–342 (1989). CASPubMed Google Scholar
Rosay, P., Armstrong, J. D., Wang, Z. & Kaiser, K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron30, 759–770 (2001). CASPubMed Google Scholar
Leal, S. M. & Neckameyer, W. S. Pharmacological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. J. Neurobiol.50, 245–261 (2002). CASPubMed Google Scholar
Neckameyer, W. S. & Cooper, R. L. GABA transporters in Drosophila melanogaster: molecular cloning, behavior, and physiology. Invert. Neurosci.3, 279–294 (1998). CASPubMed Google Scholar
Hammond, C. (ed.) Cellular and Molecular Neurobiology 2nd edn (Academic, London, 2001).An excellent textbook that relies on classical experiments to provide an introduction to cellular electrophysiology. Google Scholar