Excitatory actions of gaba during development: the nature of the nurture (original) (raw)

References

  1. Ben Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989).A description of the three 'rules': GABA is excitatory then inhibitory; GABA-synapse formation precedes glutamatergic-synapse formation; and GDPs are present in neonatal hippocampal neurons. These conclusions are based on intracellular recordings from a large sample of pyramidal neurons from birth to P14.
    CAS Google Scholar
  2. Obata, K., Oide, M. & Tanaka, H. Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res. 144, 179–184 (1978).
    CAS PubMed Google Scholar
  3. Leinekugel, X., Tseeb, V., Ben Ari, Y. & Bregestovski, P. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond.) 487, 319–329 (1995).
    CAS Google Scholar
  4. Khazipov, R., Leinekugel, X., Khalilov, I., Gaiarsa, J. L. & Ben Ari, Y. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J. Physiol. (Lond.) 498, 763–772 (1997).
    CAS Google Scholar
  5. Leinekugel, X., Medina, I., Khalilov, I., Ben Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron 18, 243–255 (1997).A demonstration of the synergistic actions of GABA and NMDA receptors. Using confocal microscopy to visualize calcium changes, together with single-NMDA-channel recordings, the authors show that GABA alters the affinity of the NMDA channel for magnesium, leading to more calcium influx in immature neurons.
    CAS PubMed Google Scholar
  6. Leinekugel, X. et al. GABA is the principal fast-acting excitatory transmitter in the neonatal brain. Adv. Neurol. 79, 189–201 (1999).
    CAS PubMed Google Scholar
  7. Ganguly, K., Schinder, A. F., Wong, S. T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105, 521–532 (2001).
    CAS PubMed Google Scholar
  8. Hollrigel, G. S., Ross, S. T. & Soltesz, I. Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus. J. Neurophysiol. 80, 2340–2351 (1998).
    CAS PubMed Google Scholar
  9. Berninger, B. et al. GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121, 2327–2335 (1995).An illustration of the positive loop: GABA activates BDNF, which enhances GABA actions in immature neurons. The shift from excitation to inhibition correlates with the effects on BDNF expression.
    CAS PubMed Google Scholar
  10. Gao, X. B. & van den Pol, A. N. GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol. 85, 425–434 (2001).The blockade of GABA receptors reduces more efficiently the ongoing activity of hypothalamic neurons than does NMDA- or AMPA-receptor blockade. Perforated-patch recordings show the early excitatory actions of GABA in a developing circuit.
    CAS PubMed Google Scholar
  11. Maric, D. et al. GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl− channels. J. Neurosci. 21, 2343–2360 (2001).
    CAS PubMed PubMed Central Google Scholar
  12. Barker, J. L. et al. GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol. 5, 305–322 (1998).A nice review of the plethora of actions of GABA during development.
    CAS PubMed Google Scholar
  13. Owens, D. F., Boyce, L. H., Davis, M. B. & Kriegstein, A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16, 6414–6423 (1996).
    CAS PubMed PubMed Central Google Scholar
  14. Dammerman, R. S., Flint, A. C., Noctor, S. & Kriegstein, A. R. An excitatory GABAergic plexus in developing neocortical layer 1. J. Neurophysiol. 84, 428–434 (2000).Electrical stimulation of neocortical layer 1 results in a GABA A -receptor-mediated PSC in pyramidal neurons. Perforated-patch recording shows that the GABA-releasing layer 1 synapse is excitatory and can trigger action potentials in cortical neurons.
    CAS PubMed Google Scholar
  15. Luhmann, H. J. & Prince, D. A. Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol. 65, 247–263 (1991).
    CAS PubMed Google Scholar
  16. Chen, G., Trombley, P. Q. & van den Pol, A. N. Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.) 494, 451–464 (1996).
    CAS Google Scholar
  17. Wang, Y. F., Gao, X. B. & van den Pol, A. N. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons. J. Neurophysiol. 86, 1252–1265 (2001).
    CAS PubMed Google Scholar
  18. Obrietan, K. & van den Pol, A. GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development. J. Neurophysiol. 82, 94–102 (1999).
    CAS PubMed Google Scholar
  19. Vinay, L. & Clarac, F. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat. Neuroscience 90, 165–176 (1999).
    CAS PubMed Google Scholar
  20. Serafini, R., Valeyev, A. Y., Barker, J. L. & Poulter, M. O. Depolarizing GABA-activated Cl− channels in embryonic rat spinal and olfactory bulb cells. J. Physiol. (Lond.) 488, 371–386 (1995).In dissociated embryonic spinal cord neurons, micromolar GABA activates chloride channels, which, when open, effectively depolarize cells by ∼30 mV. In cell-attached recordings, opening of a single GABA channel can trigger action potentials.
    CAS Google Scholar
  21. Wang, J., Reichling, D. B., Kyrozis, A. & MacDermott, A. B. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur. J. Neurosci. 6, 1275–1280 (1994).
    CAS PubMed Google Scholar
  22. Reichling, D. B., Kyrozis, A., Wang, J. & MacDermott, A. B. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J. Physiol. (Lond.) 476, 411–421 (1994).
    CAS Google Scholar
  23. Ye, J. Physiology and pharmacology of native glycine receptors in developing rat ventral tegmental area neurons. Brain Res. 862, 74–82 (2000).
    CAS PubMed Google Scholar
  24. Eilers, J., Plant, T. D., Marandi, N. & Konnerth, A. GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J. Physiol. (Lond.) 536, 429–437 (2001).
    CAS Google Scholar
  25. Yuste, R. & Katz, L. C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991).
    CAS PubMed Google Scholar
  26. Ehrlich, I., Lohrke, S. & Friauf, E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl− regulation. J. Physiol. (Lond.) 520, 121–137 (1999).
    CAS Google Scholar
  27. Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J. Neurosci. 19, 2843–2851 (1999).
    CAS PubMed PubMed Central Google Scholar
  28. Wu, W. L., Ziskind-Conhaim, L. & Sweet, M. A. Early development of glycine- and GABA-mediated synapses in rat spinal cord. J. Neurosci. 12, 3935–3945 (1992).
    CAS PubMed PubMed Central Google Scholar
  29. Reith, C. A. & Sillar, K. T. Development and role of GABAA receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles. J. Neurophysiol. 82, 3175–3187 (1999).
    CAS PubMed Google Scholar
  30. Rohrbough, J. & Spitzer, N. C. Regulation of intracellular Cl− levels by Na+-dependent Cl− cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci. 16, 82–91 (1996).
    CAS PubMed PubMed Central Google Scholar
  31. Saint-Amant, L. & Drapeau, P. Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J. Neurosci. 20, 3964–3972 (2000).
    CAS PubMed PubMed Central Google Scholar
  32. Lu, T. & Trussell, L. O. Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. J. Physiol. (Lond.) 535, 125–131 (2001).
    CAS Google Scholar
  33. Sernagor, E. & Grzywacz, N. M. Spontaneous activity in developing turtle retinal ganglion cells: pharmacological studies. J. Neurosci. 19, 3874–3887 (1999).
    CAS PubMed PubMed Central Google Scholar
  34. Sernagor, E. & Mehta, V. The role of early neural activity in the maturation of turtle retinal function. J. Anat. 199, 375–383 (2001).
    CAS PubMed PubMed Central Google Scholar
  35. Ochi, S. et al. Transient presence of GABA in astrocytes of the developing optic nerve. Glia 9, 188–198 (1993).
    CAS PubMed Google Scholar
  36. Sakatani, K., Black, J. A. & Kocsis, J. D. Transient presence and functional interaction of endogenous GABA and GABAA receptors in developing rat optic nerve. Proc. R. Soc. Lond. B 247, 155–161 (1992).
    CAS Google Scholar
  37. Kandler, K. & Friauf, E. Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15, 6890–6904 (1995).
    CAS PubMed PubMed Central Google Scholar
  38. Fukuda, A. et al. Simultaneous optical imaging of intracellular Cl− in neurons in different layers of rat neocortical slices: advantages and limitations. Neurosci. Res. 32, 363–371 (1998).
    CAS PubMed Google Scholar
  39. Kuner, T. & Augustine, G. J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).
    CAS PubMed Google Scholar
  40. Barry, P. H. & Lynch, J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membr. Biol. 121, 101–117 (1991).
    CAS PubMed Google Scholar
  41. Delpire, E. Cation–chloride cotransporters in neuronal communication. News Physiol. Sci. 15, 309–312 (2000).
    CAS PubMed Google Scholar
  42. Fukuda, A. et al. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl− gradient in neonatal rat neocortex. J. Neurophysiol. 79, 439–446 (1998).
    CAS PubMed Google Scholar
  43. Yamada, J., Okabe, A., Toyoda, H. & Fukuda, A. Development of GABAergic responses and Cl− homeostasis are regulated by differential expression of cation–Cl− cotransporters: gramicidine-perforated patch clamp and single cell multiplex RT-PCR study. Soc. Neurosci. Abstr. (2002).
  44. Rivera, C. et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).
    CAS PubMed Google Scholar
  45. Staley, K. & Smith, R. A new form of feedback at the GABAA receptor. Nature Neurosci. 4, 674–676 (2001).
    CAS PubMed Google Scholar
  46. Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? Nature Rev. Neurosci. 3, 715–727 (2002).
    CAS Google Scholar
  47. Luthi, A., Schwyzer, L., Mateos, J. M., Gahwiler, B. H. & McKinney, R. A. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nature Neurosci. 4, 1102–1107 (2001).
    CAS PubMed Google Scholar
  48. McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nature Neurosci. 2, 44–49 (1999).
    CAS PubMed Google Scholar
  49. Cherubini, E., Martina, M., Scinacalpore, M. & Strata, F. GABA excites neonatal neurones through bicuculline sensitive and insensitive chloride channels. Perspect. Dev. Neurobiol. 5, 289–304 (1998).
    CAS PubMed Google Scholar
  50. Khalilov, I., Dzhala, V., Ben Ari, Y. & Khazipov, R. Dual role of GABA in the neonatal rat hippocampus. Dev. Neurosci. 21, 310–319 (1999).
    CAS PubMed Google Scholar
  51. Verheugen, J. A., Fricker, D. & Miles, R. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci. 19, 2546–2555 (1999).
    CAS PubMed PubMed Central Google Scholar
  52. Leinekugel, X., Tseeb, V., Ben Ari, Y. & Bregestovski, P. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond.) 487, 319–329 (1995).
    CAS Google Scholar
  53. Gao, X. B., Chen, G. & van den Pol, A. N. GABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons. J. Neurophysiol. 79, 716–726 (1998).
    CAS PubMed Google Scholar
  54. Ben Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J. L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. Trends Neurosci. 20, 523–529 (1997).
    CAS PubMed Google Scholar
  55. Khazipov, R., Ragozzino, D. & Bregestovski, P. Kinetics and Mg2+ block of _N_-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience 69, 1057–1065 (1995).
    CAS PubMed Google Scholar
  56. Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R. & Monyer, H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17, 2469–2476 (1997).
    CAS PubMed PubMed Central Google Scholar
  57. Hutcheon, B., Morley, P. & Poulter, M. O. Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J. Physiol. (Lond.) 522, 3–17 (2000).
    CAS Google Scholar
  58. Edwards, D. H. Mechanisms of depolarizing inhibition at the crayfish giant motor synapse. I. Electrophysiology. J. Neurophysiol. 64, 532–540 (1990).
    CAS PubMed Google Scholar
  59. Zhang, S. J. & Jackson, M. B. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary. J. Physiol. (Lond.) 483, 583–595 (1995).
    CAS Google Scholar
  60. Jackson, M. B. & Zhang, S. J. Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. J. Physiol. (Lond.) 483, 597–611 (1995).
    CAS Google Scholar
  61. Staley, K. J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol. 68, 197–212 (1992).
    CAS PubMed Google Scholar
  62. Ziskind-Conhaim, L. Physiological functions of GABA-induced depolarizations in the developing rat spinal cord. Perspect. Dev. Neurobiol. 5, 279–287 (1998).
    CAS PubMed Google Scholar
  63. Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19, 10372–10382 (1999).
    CAS PubMed PubMed Central Google Scholar
  64. Khazipov, R. et al. Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci. 21, 9770–9781 (2001).This paper describes the first recordings from primate central neurons in utero . The GABA–glutamate sequence is also observed in primates, and the shift takes place a few weeks after mid-gestation. The article includes a quantitative analysis of dendritic growth, spine formation, and the sequential establishment of axons, apical and basal dendrites. GDPs provide all the activity until a few days before birth. At this stage, pyramidal neurons have as many as 7,000 spines, which can form elaborate patterns.
    CAS PubMed PubMed Central Google Scholar
  65. Rozenberg, F., Robain, O., Jardin, L. & Ben Ari, Y. Distribution of GABAergic neurons in late fetal and early postnatal rat hippocampus. Brain Res. Dev. Brain Res. 50, 177–187 (1989).
    CAS PubMed Google Scholar
  66. Dupuy, S. T. & Houser, C. R. Developmental changes in GABA neurons of the rat dentate gyrus: an in situ hybridization and birthdating study. J. Comp. Neurol. 389, 402–418 (1997).
    CAS PubMed Google Scholar
  67. Super, H. & Soriano, E. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. J. Comp. Neurol. 344, 101–120 (1994).
    CAS PubMed Google Scholar
  68. Diabira, D., Hennou, S., Chevassus-Au-Louis, N., Ben Ari, Y. & Gozlan, H. Late embryonic expression of AMPA receptor function in the CA1 region of the intact hippocampus in vitro. Eur. J. Neurosci. 11, 4015–4023 (1999).
    CAS PubMed Google Scholar
  69. Soriano, E., Del Rio, J. A., Martinez, A. & Super, H. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J. Comp. Neurol. 342, 571–595 (1994).
    CAS PubMed Google Scholar
  70. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).An excellent review of the tangential migration of interneurons and their underlying mechanisms and possible implications for the construction of a cortical network.
    CAS Google Scholar
  71. Hennou, S., Khalilov, I., Diabira, D., Ben-Ari, Y. & Gozlan, H. Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur. J. Neurosci. 16, 197–208 (2002).This paper describes the first recordings and reconstructions of hippocampal interneurons in utero and in early postnatal rats. It shows that the GABA–glutamate sequence also takes place in interneurons, but at an earlier stage than in pyramidal cells.
    PubMed Google Scholar
  72. Gubellini, P., Ben Ari, Y. & Gaiarsa, J. L. Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus. Eur. J. Neurosci. 14, 1937–1946 (2001).
    CAS PubMed Google Scholar
  73. Caillard, O., Ben Ari, Y. & Gaiarsa, J. L. Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci. 19, 7568–7577 (1999).
    CAS PubMed PubMed Central Google Scholar
  74. Caillard, O., Ben Ari, Y. & Gaiarsa, J. L. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J. Physiol. (Lond.) 518, 109–119 (1999).
    CAS Google Scholar
  75. Leinekugel, X. et al. Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296, 2049–2052 (2002).
    CAS PubMed Google Scholar
  76. Khalilov, I. et al. A novel in vitro preparation: the intact hippocampal formation. Neuron 19, 743–749 (1997).
    CAS PubMed Google Scholar
  77. Leinekugel, X., Khalilov, I., Ben Ari, Y. & Khazipov, R. Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J. Neurosci. 18, 6349–6357 (1998).
    CAS PubMed PubMed Central Google Scholar
  78. Menendez de la Prida, L., Bolea, S. & Sanchez-Andres, J. V. Origin of the synchronized network activity in the rabbit developing hippocampus. Eur. J. Neurosci. 10, 899–906 (1998).
    CAS PubMed Google Scholar
  79. Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14, 7–17 (1995).
    CAS PubMed Google Scholar
  80. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nature Neurosci. 3, 452–459 (2000).
    CAS PubMed Google Scholar
  81. Fellippa-Marques, S., Vinay, L. & Clarac, F. Spontaneous and locomotor-related GABAergic input onto primary afferents in the neonatal rat. Eur. J. Neurosci. 12, 155–164 (2000).
    CAS PubMed Google Scholar
  82. O'Donovan, M. J. & Landmesser, L. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo. J. Neurosci. 7, 3256–3264 (1987).
    CAS PubMed PubMed Central Google Scholar
  83. O'Donovan, M. et al. Development of spinal motor networks in the chick embryo. J. Exp. Zool. 261, 261–273 (1992).
    CAS PubMed Google Scholar
  84. Gu, X. & Spitzer, N. C. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients. Dev. Neurosci. 19, 33–41 (1997).
    CAS PubMed Google Scholar
  85. O'Donovan, M. J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol. 9, 94–104 (1999).
    CAS PubMed Google Scholar
  86. Feller, M. B., Butts, D. A., Aaron, H. L., Rokhsar, D. S. & Shatz, C. J. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19, 293–306 (1997).
    CAS PubMed Google Scholar
  87. Caillard, O., McLean, H. A., Ben Ari, Y. & Gaiarsa, J. L. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol. 79, 1341–1348 (1998).
    CAS PubMed Google Scholar
  88. McLean, H. A., Caillard, O., Khazipov, R., Ben Ari, Y. & Gaiarsa, J. L. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. J. Neurophysiol. 76, 1036–1046 (1996).
    CAS PubMed Google Scholar
  89. Fukuda, A., Mody, I. & Prince, D. A. Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J. Neurophysiol. 70, 448–452 (1993).
    CAS PubMed Google Scholar
  90. Dreyfus-Brisac, C. & Minkowski, A. Low birth weight and EEG maturation. Electroencephalogr. Clin. Neurophysiol. 26, 638 (1969).
    CAS PubMed Google Scholar
  91. Ellingson, R. J. & Peters, J. F. Development of EEG and daytime sleep patterns in normal full-term infant during the first 3 months of life: longitudinal observations. Electroencephalogr. Clin. Neurophysiol. 49, 112–124 (1980).
    CAS PubMed Google Scholar
  92. Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).
    CAS PubMed Google Scholar
  93. Hubner, C. A. et al. Disruption of KCC2 reveals an essential role of K–Cl cotransport already in early synaptic inhibition. Neuron 30, 515–524 (2001).
    CAS PubMed Google Scholar
  94. Woo, N. S. et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K–Cl cotransporter gene. Hippocampus 12, 258–268 (2002).
    CAS PubMed Google Scholar
  95. Anderson, S. A. et al. Mutations of the homeobox genes DLX-1 and DLX-2 disrupt the subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).
    CAS PubMed Google Scholar
  96. Guillemot, F. & Joyner, A. L. Dynamic expression of the Achaete scute homolog Mash 1 in the developing nervous system. Mech. Dev. 42, 171–185 (1993).
    CAS PubMed Google Scholar
  97. Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).
    CAS PubMed Google Scholar
  98. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).
    CAS PubMed Google Scholar
  99. Parra, P., Gulyas, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998).
    CAS PubMed Google Scholar
  100. Hume, J. R., Duan, D., Collier, M. L., Yamazaki, J. & Horowitz, B. Anion transport in heart. Physiol Rev. 80, 31–81 (2000).
    CAS PubMed Google Scholar
  101. Baumgarten, C. M. & Fozzard, H. A. Intracellular chloride activity in mammalian ventricular muscle. Am. J. Physiol. 241, C121–C129 (1981).
    CAS PubMed Google Scholar
  102. Liu, S., Jacob, R., Piwnica-Worms, D. & Lieberman, M. (Na + K + 2Cl) cotransport in cultured embryonic chick heart cells. Am. J. Physiol. 253, C721–C730 (1987).
    CAS PubMed Google Scholar
  103. Bowery, N. G. & Brown, D. A. Depolarizing actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia. Br. J. Pharmacol. 50, 205–218 (1974).
    CAS PubMed PubMed Central Google Scholar
  104. Lorsignol, A., Taupignon, A. & Dufy, B. Short applications of γ-aminobutyric acid increase intracellular calcium concentrations in single identified rat lactotrophs. Neuroendocrinology 60, 389–399 (1994).
    CAS PubMed Google Scholar
  105. Garcia, L., Rigoulet, M., Georgescauld, D., Dufy, B. & Sartor, P. Regulation of intracellular chloride concentration in rat lactotrophs: possible role of mitochondria. FEBS Lett. 400, 113–118 (1997).
    CAS PubMed Google Scholar
  106. Krnjevic, K., Cherubini, E. & Ben-Ari, Y. Anoxia on slow inward currents of immature hippocampal neurons. J. Neurophysiol. 62, 896–906 (1989).
    CAS PubMed Google Scholar
  107. Ben Ari, Y. Developing networks play a similar melody. Trends Neurosci. 24, 353–360 (2001).
    CAS PubMed Google Scholar
  108. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).
    CAS PubMed Google Scholar
  109. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).
    CAS PubMed PubMed Central Google Scholar
  110. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).In this study, knockout of Munc18 abolished vesicular release and was lethal. However, the principal brain structures — the neocortex, thalamus, hippocampus and so on — developed, indicating that vesicular release is not required for the correct construction of brain structures.
    CAS PubMed Google Scholar
  111. Vassilatis, D. K. et al. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J. Mol. Evol. 44, 501–508 (1997).
    CAS PubMed Google Scholar
  112. Wolff, M. A. & Wingate, V. P. Characterization and comparative pharmacological studies of a functional γ-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae:Lepidoptera). Invert. Neurosci. 3, 305–315 (1998).
    CAS PubMed Google Scholar
  113. Shelp, B. J., Bown, A. W. & McLean, M. D. Metabolism and functions of γ-aminobutyric acid. Trends Plant Sci. 4, 446–452 (1999).
    CAS PubMed Google Scholar
  114. Breitkreuz, K. E., Shelp, B. J., Fischer, W. N., Schwacke, R. & Rentsch, D. Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett. 450, 280–284 (1999).
    CAS PubMed Google Scholar
  115. Kathiresan, A., Tung, P., Chinnappa, C. C. & Reid, D. M. γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol. 115, 129–135 (1997).
    CAS PubMed PubMed Central Google Scholar
  116. Gallego, P. P., Whotton, L., Picton, S., Grierson, D. & Gray, J. E. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Mol. Biol. 27, 1143–1151 (1995).
    CAS PubMed Google Scholar
  117. Galleschi, L., Floris, C. & Cozzani, I. Variation of glutamate decarboxylase activity and γ-amino butyric acid content of wheat embryos during ripening of seeds. Experientia 33, 1575–1576 (1977).
    CAS PubMed Google Scholar
  118. Perovic, S., Krasko, A., Prokic, I., Muller, I. M. & Muller, W. E. Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res. 296, 395–404 (1999).
    CAS PubMed Google Scholar
  119. Wegerhoff, R. GABA and serotonin immunoreactivity during postembryonic brain development in the beetle Tenebrio molitor. Microsc. Res. Tech. 45, 154–164 (1999).
    CAS PubMed Google Scholar
  120. Lee, D. & O'Dowd, D. K. Fast excitatory synaptic transmission mediated by nicotinic acetylcholine receptors in Drosophila neurons. J. Neurosci. 19, 5311–5321 (1999).
    CAS PubMed PubMed Central Google Scholar
  121. Delgado, R., Barla, R., Latorre, R. & Labarca, P. l-Glutamate activates excitatory and inhibitory channels in Drosophila larval muscle. FEBS Lett. 243, 337–342 (1989).
    CAS PubMed Google Scholar
  122. Rosay, P., Armstrong, J. D., Wang, Z. & Kaiser, K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 30, 759–770 (2001).
    CAS PubMed Google Scholar
  123. Leal, S. M. & Neckameyer, W. S. Pharmacological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. J. Neurobiol. 50, 245–261 (2002).
    CAS PubMed Google Scholar
  124. Neckameyer, W. S. & Cooper, R. L. GABA transporters in Drosophila melanogaster: molecular cloning, behavior, and physiology. Invert. Neurosci. 3, 279–294 (1998).
    CAS PubMed Google Scholar
  125. Hammond, C. (ed.) Cellular and Molecular Neurobiology 2nd edn (Academic, London, 2001).An excellent textbook that relies on classical experiments to provide an introduction to cellular electrophysiology.
    Google Scholar

Download references