Mitochondrial dysfunction in inherited renal disease and acute kidney injury (original) (raw)
Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature396, 133–140 (1998). ArticleCASPubMed Google Scholar
Frey, T. G. & Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci.25, 319–324 (2000). ArticleCASPubMed Google Scholar
Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature290, 457–465 (1981). ArticleCASPubMed Google Scholar
Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet.13, 878–890 (2012). ArticleCASPubMedPubMed Central Google Scholar
Opalinska, M. & Meisinger, C. Metabolic control via the mitochondrial protein import machinery. Curr. Opin. Cell Biol.33, 42–48 (2015). ArticleCASPubMed Google Scholar
Dimmer, K. S. & Scorrano, L. (De)constructing mitochondria: what for? Physiology (Bethesda)21, 233–241 (2006). CAS Google Scholar
Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell2, 55–67 (2002). ArticleCASPubMed Google Scholar
Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell32, 529–539 (2008). ArticleCASPubMed Google Scholar
Ghezzi, D. & Zeviani, M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv. Exp. Med. Biol.748, 65–106 (2012). ArticleCASPubMed Google Scholar
Nguyen, T. P. et al. Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis. Biochim. Biophys. Acta1841, 1628–1638 (2014). ArticleCASPubMedPubMed Central Google Scholar
Allen, J. W. Cytochrome c biogenesis in mitochondria — systems III and V. FEBS J.278, 4198–4216 (2011). ArticleCASPubMed Google Scholar
DiMauro, S. & Schon, E. A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci.31, 91–123 (2008). ArticleCASPubMed Google Scholar
Mayr, J. A. et al. Spectrum of combined respiratory chain defects. J. Inherit. Metab. Dis.38, 4198–4216 (2015). Google Scholar
Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol.77, 753–759 (2015). ArticleCASPubMedPubMed Central Google Scholar
Petruzzella, V. et al. Deep sequencing unearths nuclear mitochondrial sequences under Leber's hereditary optic neuropathy-associated false heteroplasmic mitochondrial DNA variants. Hum. Mol. Genet.21, 3753–3764 (2012). ArticleCASPubMed Google Scholar
Giordano, C. et al. Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation. Biochem. Biophys. Res. Commun.293, 521–529 (2002). ArticleCASPubMed Google Scholar
Doimo, M. et al. Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim. Biophys. Acta1842, 1–6 (2014). ArticleCASPubMedPubMed Central Google Scholar
Emma, F., Bertini, E., Salviati, L. & Montini, G. Renal involvement in mitochondrial cytopathies. Pediatr. Nephrol.27, 539–550 (2012). ArticlePubMed Google Scholar
Quinzii, C. M. et al. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J.24, 3733–3743 (2010). ArticleCASPubMedPubMed Central Google Scholar
Morison, I. M. et al. A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat. Genet.40, 387–389 (2008). ArticleCASPubMed Google Scholar
De Rocco, D. et al. Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim. Biophys. Acta1842, 269–274 (2014). ArticleCASPubMed Google Scholar
Desbats, M. A. et al. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur. J. Hum. Genet.23, 1254–1258 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bodemer, C. et al. Hair and skin disorders as signs of mitochondrial disease. Pediatrics103, 428–433 (1999). ArticleCASPubMed Google Scholar
Niaudet, P. & Rotig, A. The kidney in mitochondrial cytopathies. Kidney Int.51, 1000–1007 (1997). ArticleCASPubMed Google Scholar
Deetjen, P. Measurement of metabolism during renal work. Int. J. Biochem.12, 243–244 (1980). ArticleCASPubMed Google Scholar
Thurau, K. Renal Na-reabsorption and O2-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc. Soc. Exp. Biol. Med.106, 714–717 (1961). ArticleCASPubMed Google Scholar
Ogier, H. et al. de Toni-Fanconi-Debré syndrome with Leigh syndrome revealing severe muscle cytochrome c oxidase deficiency. J. Pediatr.112, 734–739 (1988). ArticleCASPubMed Google Scholar
Niaudet, P. et al. Deletion of the mitochondrial DNA in a case of de Toni-Debré-Fanconi syndrome and Pearson syndrome. Pediatr. Nephrol.8, 164–168 (1994). ArticleCASPubMed Google Scholar
Rotig, A. Renal disease and mitochondrial genetics. J. Nephrol.16, 286–292 (2003). CASPubMed Google Scholar
Morris, A. A. et al. Neonatal Fanconi syndrome due to deficiency of complex III of the respiratory chain. Pediatr. Nephrol.9, 407–411 (1995). ArticleCASPubMed Google Scholar
Au, K. M. et al. Mitochondrial DNA deletion in a girl with Fanconi's syndrome. Pediatr. Nephrol.22, 136–140 (2007). ArticlePubMed Google Scholar
Kuwertz-Broking, E. et al. Renal Fanconi syndrome: first sign of partial respiratory chain complex IV deficiency. Pediatr. Nephrol.14, 495–498 (2000). ArticleCASPubMed Google Scholar
Mochizuki, H. et al. Mitochondrial encephalomyopathies preceded by de-Toni-Debré-Fanconi syndrome or focal segmental glomerulosclerosis. Clin. Nephrol.46, 347–352 (1996). CASPubMed Google Scholar
De Meirleir, L. et al. Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene. Am. J. Med. Genet. A121A, 126–131 (2003). ArticlePubMed Google Scholar
Liu, H. M. et al. A novel 3670-base pair mitochondrial DNA deletion resulting in multi-systemic manifestations in a child. Pediatr. Neonatol.53, 264–268 (2012). ArticlePubMed Google Scholar
Tzoufi, M. et al. A rare case report of simultaneous presentation of myopathy, Addison's disease, primary hypoparathyroidism, and Fanconi syndrome in a child diagnosed with Kearns–Sayre syndrome. Eur. J. Pediatr.172, 557–561 (2013). ArticlePubMed Google Scholar
Pitchon, E. M. et al. Patient with Fanconi syndrome (FS) and retinitis pigmentosa (RP) caused by a deletion and duplication of mitochondrial DNA (mtDNA). Klin. Monbl Augenheilkd224, 340–343 (2007). ArticleCASPubMed Google Scholar
Mori, K., Narahara, K., Ninomiya, S., Goto, Y. & Nonaka, I. Renal and skin involvement in a patient with complete Kearns–Sayre syndrome. Am. J. Med. Genet.38, 583–587 (1991). ArticleCASPubMed Google Scholar
Topaloglu, R. et al. Two new cases with Pearson syndrome and review of Hacettepe experience. Turk. J. Pediatr.50, 572–576 (2008). PubMed Google Scholar
Duncan, A. J. et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am. J. Hum. Genet.84, 558–566 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. S. et al. Mitochondrial tubulopathy: the many faces of mitochondrial disorders. Pediatr. Nephrol.16, 710–712 (2001). ArticleCASPubMed Google Scholar
Gilbert, R. D. & Emms, M. Pearson's syndrome presenting with Fanconi syndrome. Ultrastruct. Pathol.20, 473–475 (1996). ArticleCASPubMed Google Scholar
Ezgu, F. et al. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course. Gene528, 364–366 (2013). ArticleCASPubMed Google Scholar
Gai, X. et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet.93, 482–495 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tucker, E. J. et al. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum. Mutat.33, 411–418 (2012). ArticleCASPubMed Google Scholar
Matsutani, H. et al. Partial deficiency of cytochrome c oxidase with isolated proximal renal tubular acidosis and hypercalciuria. Child Nephrol. Urol.12, 221–224 (1992). CASPubMed Google Scholar
Martin-Hernandez, E. et al. Renal pathology in children with mitochondrial diseases. Pediatr. Nephrol.20, 1299–1305 (2005). ArticlePubMed Google Scholar
Emma, F. et al. 'Bartter-like' phenotype in Kearns–Sayre syndrome. Pediatr. Nephrol.21, 355–360 (2006). ArticlePubMed Google Scholar
Goto, Y. et al. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns–Sayre syndrome. J. Pediatr.116, 904–910 (1990). ArticleCASPubMed Google Scholar
Visapaa, I. et al. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am. J. Hum. Genet.71, 863–876 (2002). ArticlePubMedPubMed Central Google Scholar
Reilly, R. F. & Ellison, D. H. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol. Rev.80, 277–313 (2000). ArticleCASPubMed Google Scholar
Simon, D. B. et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat. Genet.12, 24–30 (1996). ArticleCASPubMed Google Scholar
Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol.48, 9–31 (1986). ArticleCASPubMed Google Scholar
Klootwijk, E. D. et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N. Engl. J. Med.370, 129–138 (2014). ArticleCASPubMed Google Scholar
Muller-Deile, J. & Schiffer, M. The podocyte power-plant disaster and its contribution to glomerulopathy. Front. Endocrinol. (Lausanne)5, 209 (2014). Google Scholar
Higgins, G. C. & Coughlan, M. T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol.171, 1917–1942 (2014). ArticleCASPubMedPubMed Central Google Scholar
Che, R., Yuan, Y., Huang, S. & Zhang, A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am. J. Physiol. Renal Physiol.306, F367–F378 (2014). ArticleCASPubMed Google Scholar
Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol.26, 1040–1052 (2015). ArticleCASPubMed Google Scholar
Montini, G., Malaventura, C. & Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med.358, 2849–2850 (2008). ArticleCASPubMed Google Scholar
Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest.121, 2013–2024 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest.123, 5179–5189 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gasser, D. L. et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10 . Am. J. Physiol. Renal Physiol.305, F1228–1238 (2013). ArticleCASPubMedPubMed Central Google Scholar
Quinzii, C. et al. A mutation in _para_-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am. J. Hum. Genet.78, 345–349 (2006). ArticleCASPubMed Google Scholar
Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet.79, 1125–1129 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vasta, V., Merritt, J. L. 2nd, Saneto, R. P. & Hahn, S. H. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr. Int.54, 585–601 (2012). ArticleCASPubMed Google Scholar
Salviati, L. et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology65, 606–608 (2005). ArticleCASPubMed Google Scholar
Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol.18, 2773–2780 (2007). ArticleCASPubMed Google Scholar
McCarthy, H. J. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol.8, 637–648 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dinwiddie, D. L. et al. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics102, 148–156 (2013). ArticleCASPubMedPubMed Central Google Scholar
Scalais, E. et al. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur. J. Paediatr. Neurol.17, 625–630 (2013). ArticlePubMed Google Scholar
The Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med.369, 233–244 (2013).
Rotig, A. et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet356, 391–395 (2000). ArticleCASPubMed Google Scholar
Rahman, S., Clarke, C. F. & Hirano, M. 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul. Disord.22, 76–86 (2012). ArticlePubMed Google Scholar
Mollet, J. et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J. Clin. Invest.117, 765–772 (2007). ArticleCASPubMedPubMed Central Google Scholar
Saiki, R. et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am. J. Physiol. Renal Physiol.295, F1535–F1544 (2008). ArticleCASPubMedPubMed Central Google Scholar
Falk, M. J. et al. Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol. Med.3, 410–427 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lopez, L. C. et al. Treatment of CoQ10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS ONE5, e11897 (2010). ArticleCASPubMedPubMed Central Google Scholar
Quinzii, C. M. et al. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J.27, 612–621 (2013). ArticleCASPubMedPubMed Central Google Scholar
Freyer, C. et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J. Med. Genet.52, 779–783 (2015). ArticleCASPubMedPubMed Central Google Scholar
Desbats, M. A., Lunardi, G., Doimo, M., Trevisson, E. & Salviati, L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ10) deficiency. J. Inherit. Metab. Dis.38, 145–156 (2015). ArticleCASPubMed Google Scholar
Mollet, J. et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am. J. Hum. Genet.82, 623–630 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lagier-Tourenne, C. et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am. J. Hum. Genet.82, 661–672 (2008). ArticleCASPubMedPubMed Central Google Scholar
Luna-Sanchez, M. et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol. Med.7, 670–687 (2015). ArticleCASPubMedPubMed Central Google Scholar
Pavlakis, S. G., Phillips, P. C., DiMauro, S., De Vivo, D. C. & Rowland, L. P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann. Neurol.16, 481–488 (1984). ArticleCASPubMed Google Scholar
Mehrazin, M. et al. Longitudinal changes of mtDNA A3243G mutation load and level of functioning in MELAS. Am. J. Med. Genet. A149A, 584–587 (2009). ArticleCASPubMedPubMed Central Google Scholar
Seidowsky, A. et al. Renal involvement in MELAS syndrome — a series of 5 cases and review of the literature. Clin. Nephrol.80, 456–463 (2013). ArticlePubMed Google Scholar
Hall, A. M. et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int.87, 610–622 (2015). ArticleCASPubMed Google Scholar
Wilichowski, E., Pouwels, P. J., Frahm, J. & Hanefeld, F. Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics30, 256–263 (1999). ArticleCASPubMed Google Scholar
Salviati, L. et al. Novel SURF1 mutation in a child with subacute encephalopathy and without the radiological features of Leigh syndrome. Am. J. Med. Genet. A128A, 195–198 (2004). ArticlePubMed Google Scholar
Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol.10, 806–818 (2011). ArticleCASPubMed Google Scholar
Gropman, A. L. Neuroimaging in mitochondrial disorders. Neurotherapeutics10, 273–285 (2013). ArticlePubMed Google Scholar
Bricout, M. et al. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J. Med. Genet.51, 429–435 (2014). ArticleCASPubMed Google Scholar
Leigh, P. N., Al-Sarraj, S. & DiMauro, S. Subacute necrotising encephalomyelopathy (Leigh's disease; Leigh syndrome). J. Neurol. Neurosurg. Psychiatry86, 363–365 (2015). ArticleCASPubMed Google Scholar
Sundaram, C. et al. Contribution of muscle biopsy and genetics to the diagnosis of chronic progressive external opthalmoplegia of mitochondrial origin. J. Clin. Neurosci.18, 535–538 (2011). ArticlePubMed Google Scholar
Trevisson, E., DiMauro, S., Navas, P. & Salviati, L. Coenzyme Q deficiency in muscle. Curr. Opin. Neurol.24, 449–456 (2011). ArticleCASPubMed Google Scholar
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc.7, 1235–1246 (2012). ArticleCASPubMed Google Scholar
Montero, R. et al. Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin. Biochem.41, 697–700 (2008). ArticleCASPubMed Google Scholar
Payne, B. A., Gardner, K., Coxhead, J. & Chinnery, P. F. Deep resequencing of mitochondrial DNA. Methods Mol. Biol.1264, 59–66 (2015). ArticleCASPubMed Google Scholar
Shanske, S. et al. Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am. J. Med. Genet. A130A, 134–137 (2004). ArticlePubMed Google Scholar
Yubero, D. et al. Molecular diagnosis of coenzyme Q10 deficiency. Expert Rev. Mol. Diagn.15, 1049–1059 (2015). ArticleCASPubMed Google Scholar
Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol.26, 1279–1289 (2015). ArticleCASPubMed Google Scholar
Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest.121, 4003–4014 (2011). ArticleCASPubMedPubMed Central Google Scholar
Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest.119, 1275–1285 (2009). ArticleCASPubMedPubMed Central Google Scholar
Manny, J. et al. Structural changes in the perfused canine kidney exposed to the direct action of endotoxin. Isr. J. Med. Sci.16, 153–161 (1980). CASPubMed Google Scholar
Trump, B. F. et al. The application of electron microscopy and cellular biochemistry to the autopsy. Hum. Pathol.6, 499–516 (1975). ArticleCASPubMed Google Scholar
Takasu, O. et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med.187, 509–517 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zsengeller, Z. K. et al. Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J. Histochem. Cytochem.60, 521–529 (2012). ArticleCASPubMedPubMed Central Google Scholar
Funk, J. A. & Schnellmann, R. G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol.302, F853–F864 (2012). ArticlePubMed Google Scholar
Feldkamp, T., Kribben, A., Roeser, N. F., Senter, R. A. & Weinberg, J. M. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation. Am. J. Physiol. Renal Physiol.290, F465–F477 (2006). ArticleCASPubMed Google Scholar
Weinberg, J. M., Venkatachalam, M. A., Roeser, N. F. & Nissim, I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl Acad. Sci. USA97, 2826–2831 (2000). ArticleCASPubMed Google Scholar
Bienholz, A. et al. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation. PLoS ONE9, e94584 (2014). ArticleCASPubMedPubMed Central Google Scholar
Li, S. et al. Transgenic expression of proximal tubule peroxisome proliferator-activated receptor-α in mice confers protection during acute kidney injury. Kidney Int.76, 1049–1062 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tannenbaum, J., Purkerson, M. L. & Klahr, S. Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. Am. J. Physiol.245, F254–F262 (1983). CASPubMed Google Scholar
Zager, R. A., Johnson, A. C. & Hanson, S. Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int.67, 111–121 (2005). ArticleCASPubMed Google Scholar
Cocheme, H. M. et al. Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion7, S94–S102 (2007). ArticleCASPubMed Google Scholar
Kelso, G. F. et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem.276, 4588–4596 (2001). ArticleCASPubMed Google Scholar
Zhao, K. et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem.279, 34682–34690 (2004). ArticleCASPubMed Google Scholar
Szeto, H. H. et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol.22, 1041–1052 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mukhopadhyay, P. et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic. Biol. Med.52, 497–506 (2012). ArticleCASPubMed Google Scholar
Tang, W. X., Wu, W. H., Qiu, H. Y., Bo, H. & Huang, S. M. Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. J. Nephrol.26, 1073–1082 (2013). ArticleCASPubMed Google Scholar
Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest.125, 715–726 (2015). ArticlePubMedPubMed Central Google Scholar
Ishihara, M. et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol.305, F495–F509 (2013). ArticleCASPubMed Google Scholar
Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92, 829–839 (1998). ArticleCASPubMed Google Scholar
Sweeney, T. E., Suliman, H. B., Hollingsworth, J. W. & Piantadosi, C. A. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS ONE5, e11606 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sweeney, T. E., Suliman, H. B., Hollingsworth, J. W., Welty-Wolf, K. E. & Piantadosi, C. A. A toll-like receptor 2 pathway regulates the Ppargc1a/b metabolic co-activators in mice with Staphylococcal aureus sepsis. PLoS ONE6, e25249 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rasbach, K. A. & Schnellmann, R. G. PGC-1α over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun.355, 734–739 (2007). ArticleCASPubMed Google Scholar
Jesinkey, S. R. et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol.25, 1157–1162 (2014). ArticleCASPubMedPubMed Central Google Scholar
Schon, E. A. et al. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science244, 346–349 (1989). ArticleCASPubMed Google Scholar
Glerum, D. M. & Tzagoloff, A. Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant. Proc. Natl Acad. Sci. USA91, 8452–8456 (1994). ArticleCASPubMed Google Scholar
Lim, S. C. et al. Mutations in LYRM4, encoding iron–sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum. Mol. Genet.22, 4460–4473 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell155, 160–171 (2013). ArticleCASPubMedPubMed Central Google Scholar
de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature456, 605–610 (2008). ArticleCASPubMed Google Scholar
Hirano, M., Lagier-Tourenne, C., Valentino, M. L., Marti, R. & Nishigaki, Y. Thymidine phosphorylase mutations cause instability of mitochondrial DNA. Gene354, 152–156 (2005). ArticleCASPubMed Google Scholar
Valnot, I. et al. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum. Mol. Genet.9, 1245–1249 (2000). ArticleCASPubMed Google Scholar
Tay, S. K. et al. Unusual clinical presentations in four cases of Leigh disease, cytochrome C oxidase deficiency, and SURF1 gene mutations. J. Child Neurol.20, 670–674 (2005). ArticlePubMed Google Scholar
de Lonlay, P. et al. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat. Genet.29, 57–60 (2001). ArticleCASPubMed Google Scholar
Tucker, E. J. et al. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLoS Genet.9, e1004034 (2013). ArticlePubMedPubMed Central Google Scholar
Magner, M. et al. TMEM70 deficiency: long-term outcome of 48 patients. J. Inherit. Metab. Dis.38, 417–426 (2015). ArticleCASPubMed Google Scholar
Saada, A. et al. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet.44, 784–786 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nakajima, J. et al. A novel homozygous YARS2 mutation causes severe myopathy, lactic acidosis, and sideroblastic anemia 2. J. Hum. Genet.59, 229–232 (2014). ArticleCASPubMed Google Scholar
Belostotsky, R. et al. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am. J. Hum. Genet.88, 193–200 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bourdon, A. et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet.39, 776–780 (2007). ArticleCASPubMed Google Scholar
Prasad, C. et al. Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings. Mol. Genet. Metab.108, 190–194 (2013). ArticleCASPubMed Google Scholar
El-Hattab, A. W. & Scaglia, F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics10, 186–198 (2013). ArticleCASPubMedPubMed Central Google Scholar
Carrozzo, R. et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain130, 862–874 (2007). ArticlePubMed Google Scholar
Dimmock, D. P. et al. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum. Mutat.29, 330–331 (2008). ArticleCASPubMed Google Scholar