The use of PET in Alzheimer disease (original) (raw)
Brookmeyer, R., Johnson, E., Ziegler-Graha, K. & Arrighi, H. M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement.3, 186–191 (2007). ArticlePubMed Google Scholar
Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology58, 1791–1800 (2002). ArticlePubMed Google Scholar
Dubois, B. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria. Lancet Neurol.6, 734–746 (2007). ArticlePubMed Google Scholar
Herholz, K., Carter, S. F. & Jones, M. Positron emission tomography imaging in dementia. Br. J. Radiol.80 (Spec. No. 2), S160–S167 (2007). ArticlePubMed Google Scholar
Small, G. W. et al. Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol.7, 161–172 (2008). ArticlePubMedPubMed Central Google Scholar
Mosconi, L. et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging36, 811–822 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mosconi, L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging32, 486–510 (2005). ArticleCASPubMed Google Scholar
Engler, H. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain129, 2856–2866 (2006). ArticlePubMed Google Scholar
Jagust, W., Reed, B., Mungas, D., Ellis, W. & Decarli, C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology69, 871–877 (2007). ArticleCASPubMed Google Scholar
Drzezga, A. et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET. J. Nucl. Med.46, 1625–1632 (2005). CASPubMed Google Scholar
Drzezga, A. et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging30, 1104–1113 (2003). ArticlePubMed Google Scholar
Mosconi, L. et al. Early detection of Alzheimer's disease using neuroimaging. Exp. Gerontol.42, 129–138 (2007). ArticlePubMed Google Scholar
Minoshima, S., Foster, N. L. & Kuhl, D. E. Posterior cingulate cortex in Alzheimer's disease. Lancet344, 895 (1994). ArticleCASPubMed Google Scholar
Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann. Neurol.42, 85–94 (1997). ArticleCASPubMed Google Scholar
Schöll, M. et al. Glucose metabolism and PIB binding in carriers of a His163Tyr presenilin 1 mutation. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2009.08.016. ArticlePubMedCAS Google Scholar
Reiman, E. M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc. Natl Acad. Sci. USA101, 284–289 (2004). ArticleCASPubMed Google Scholar
Small, G. W. et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA273, 942–947 (1995). ArticleCASPubMed Google Scholar
Reiman, E. M. et al. Declining brain activity in cognitively normal apolipoprotein E ε4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc. Natl Acad. Sci. USA98, 3334–3339 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reiman, E. M. et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the ε4 allele for apolipoprotein E. N. Engl. J. Med.334, 752–758 (1996). ArticleCASPubMed Google Scholar
Pedersen, N. L., Gatz, M., Berg, S. & Johansson, B. How heritable is Alzheimer's disease late in life? Findings from Swedish twins. Ann. Neurol.55, 180–185 (2004). ArticlePubMed Google Scholar
Järvenpää, T. et al. Regional cerebral glucose metabolism in monozygotic twins discordant for Alzheimer's disease. Dement. Geriatr. Cogn. Disord.16, 245–252 (2003). ArticlePubMedCAS Google Scholar
Virta, J. J. et al. Voxel-based analysis of cerebral glucose metabolism in mono- and dizygotic twins discordant for Alzheimer disease. J. Neurol. Neurosurg. Psychiatry80, 259–266 (2009). ArticleCASPubMed Google Scholar
Mosconi, L. et al. Maternal family history of Alzheimer's disease predisposes to reduced brain glucose metabolism. Proc. Natl Acad. Sci. USA104, 19067–19072 (2007). ArticleCASPubMedPubMed Central Google Scholar
Braak, H., de Vos, R. A., Jansen, E. N., Bratzke, H. & Braak, E. Neuropathological hallmarks of Alzheimer's and Parkinson's diseases. Prog. Brain Res.117, 267–285 (1998). ArticleCASPubMed Google Scholar
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol.4, 273–277 (1978). ArticleCASPubMed Google Scholar
Rinne, J. O. et al. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry74, 113–115 (2003). ArticleCASPubMedPubMed Central Google Scholar
Herholz, K., Weisenbach, S., Kalbe, E., Diederich, N. J. & Heiss, W. D. Cerebral acetylcholine esterase activity in mild cognitive impairment. Neuroreport16, 1431–1434 (2005). ArticleCASPubMed Google Scholar
Paterson, D. & Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol.61, 75–111 (2000). ArticleCASPubMed Google Scholar
Kadir, A., Almkvist, O., Wall, A., Långström, B. & Nordberg, A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer's disease. Psychopharmacology (Berl.)188, 509–520 (2006). ArticleCAS Google Scholar
Horti, A. G., Gao, Y., Kuwabara, H. & Dannals, R. F. Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci. doi:10.1016/j.lfs.2009.02.029. ArticleCASPubMed Google Scholar
Sabri, O., Kendziorra, K., Wolf, H., Gertz, H. J. & Brust, P. Acetylcholine receptors in dementia and mild cognitive impairment. Eur. J. Nucl. Med. Mol. Imaging35 (Suppl. 1), S30–S45 (2008). ArticleCASPubMed Google Scholar
Pomper, M. G. et al. Synthesis and biodistribution of radiolabeled α7 nicotinic acetylcholine receptor ligands. J. Nucl. Med.46, 326–334 (2005). CASPubMed Google Scholar
Toyohara, J. et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping α7 nicotinic receptors by positron emission tomography. Ann. Nucl. Med.23, 301–309 (2009). ArticleCASPubMed Google Scholar
Zubieta, J. K. et al. Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse39, 275–287 (2001). ArticleCASPubMed Google Scholar
Cohen, R. M. et al. Higher in vivo muscarinic-2 receptor distribution volumes in aging subjects with an apolipoprotein E-ε4 allele. Synapse49, 150–156 (2003). ArticleCASPubMed Google Scholar
Reinikainen, K. J., Soininen, H. & Riekkinen, P. J. Neurotransmitter changes in Alzheimer's disease: implications to diagnostics and therapy. J. Neurosci. Res.27, 576–586 (1990). ArticleCASPubMed Google Scholar
Rinne, J. O., Sahlberg, N., Ruottinen, H., Nagren, K. & Lehikoinen, P. Striatal uptake of the dopamine reuptake ligand [11C]β-CFT is reduced in Alzheimer's disease assessed by positron emission tomography. Neurology50, 152–156 (1998). ArticleCASPubMed Google Scholar
Walker, Z. et al. Differentiation of dementia with Lewy bodies from Alzheimer's disease using a dopaminergic presynaptic ligand. J. Neurol. Neurosurg. Psychiatry73, 134–140 (2002). ArticleCASPubMedPubMed Central Google Scholar
McKeith, I. et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol.6, 305–313 (2007). ArticlePubMed Google Scholar
Walker, Z. et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J. Neurol. Neurosurg. Psychiatry78, 1176–1181 (2007). ArticlePubMedPubMed Central Google Scholar
Kemppainen, N., Ruottinen, H., Någren, K. & Rinne, J. O. PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology55, 205–209 (2000). ArticleCASPubMed Google Scholar
Tanaka, Y. et al. Decreased striatal D2 receptor density associated with severe behavioral abnormality in Alzheimer's disease. Ann. Nucl. Med.17, 567–573 (2003). ArticlePubMed Google Scholar
Kemppainen, N. et al. Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer's disease. Eur. J. Neurosci.18, 149–154 (2003). ArticleCASPubMed Google Scholar
Nordberg, A. Neuroreceptor changes in Alzheimer disease. Cerebrovasc. Brain. Metab. Rev.4, 303–328 (1992). CASPubMed Google Scholar
Kepe, V. et al. Serotonin 1A receptors in the living brain of Alzheimer's disease patients. Proc. Natl Acad. Sci. USA103, 702–707 (2006). ArticleCASPubMedPubMed Central Google Scholar
Meltzer, C. C. et al. PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. Am. J. Psychiatry156, 1871–1878 (1999). CASPubMed Google Scholar
Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol.55, 306–319 (2004). ArticleCASPubMed Google Scholar
Klunk, W. E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci.25, 10598–10606 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ikonomovic, M. D. et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain131, 1630–1645 (2008). ArticlePubMedPubMed Central Google Scholar
Leinonen, V. et al. Assessment of β-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch. Neurol.65, 1304–1309 (2008). ArticlePubMed Google Scholar
Svedberg, M. M. et al. [11C]PIB-amyloid binding and levels of Aβ40 and Aβ42 in postmortem brain tissue from Alzheimer patients. Neurochem. Int.54, 347–357 (2009). ArticleCASPubMed Google Scholar
Archer, H. A. et al. Amyloid load and cerebral atrophy in Alzheimer's disease: an 11C-PIB positron emission tomography study. Ann. Neurol.60, 145–147 (2006). ArticlePubMed Google Scholar
Kemppainen, N. M. et al. Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology67, 1575–1580 (2006). ArticleCASPubMed Google Scholar
Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology67, 446–452 (2006). ArticleCASPubMed Google Scholar
Price, J. C. et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow Metab.25, 1528–1547 (2005). ArticleCASPubMed Google Scholar
Rowe, C. C. et al. Imaging β-amyloid burden in aging and dementia. Neurology68, 1718–1725 (2007). ArticleCASPubMed Google Scholar
Forsberg, A. et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging29, 1456–1465 (2008). ArticleCASPubMed Google Scholar
Jack, C. R. Jr et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain132, 1355–1365 (2009). ArticlePubMedPubMed Central Google Scholar
Kemppainen, N. M. et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology68, 1603–1606 (2007). ArticleCASPubMed Google Scholar
Pike, K. E. et al. β-Amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain130, 2837–2844 (2007). ArticlePubMed Google Scholar
Okello, A. et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology73, 754–760 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lowe, V. J. et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J. Nucl. Med.50, 878–886 (2009). ArticlePubMed Google Scholar
Forsberg, A. et al. High PIB retention in Alzheimer's disease is an early event with complex relationship with CSF biomarkers and functional parameters. Curr. Alzheimer Res. doi:10.2174/1567210198607192050.
Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol.59, 512–519 (2006). ArticleCASPubMed Google Scholar
Koivunen, J. et al. PET amyloid ligand [11C]PIB uptake and cerebrospinal fluid beta-amyloid in mild cognitive impairment. Dement. Geriatr. Cogn. Disord.26, 378–383 (2008). ArticleCASPubMed Google Scholar
Edison, P. et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology68, 501–508 (2007). ArticleCASPubMed Google Scholar
Landau, S. M. et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2009.07.002. ArticlePubMed Google Scholar
Grimmer, T. et al. Clinical severity of Alzheimer's disease is associated with PIB uptake in PET. Neurobiol. Aging30, 1902–1909 (2008). ArticlePubMedCAS Google Scholar
Villemagne, V. L. et al. Aβ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease. Neuropsychologia46, 1688–1697 (2008). ArticleCASPubMed Google Scholar
Drzezga, A. et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology72, 1487–1494 (2009). ArticleCASPubMed Google Scholar
Reiman, E. M. et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc. Natl Acad. Sci. USA106, 6820–6825 (2009). ArticleCASPubMedPubMed Central Google Scholar
Scheinin, N. M. et al. Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology73, 1186–1192 (2009). ArticleCASPubMed Google Scholar
Edison, P. et al. Amyloid load in Parkinson's disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J. Neurol. Neurosurg. Psychiatry79, 1331–1338 (2008). ArticleCASPubMed Google Scholar
Johansson, A. et al. [11C]-PIB imaging in patients with Parkinson's disease: preliminary results. Parkinsonism Relat. Disord.14, 345–347 (2008). ArticleCASPubMed Google Scholar
Maetzler, W. et al. [11C]PIB binding in Parkinson's disease dementia. Neuroimage39, 1027–1033 (2008). ArticlePubMed Google Scholar
Drzezga, A. et al. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer's disease. Neuroimage39, 619–633 (2008). ArticlePubMed Google Scholar
Engler, H. et al. In vivo amyloid imaging with PET in frontotemporal dementia. Eur. J. Nucl. Med. Mol. Imaging35, 100–106 (2008). ArticlePubMed Google Scholar
Johnson, K. A. et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann. Neurol.62, 229–234 (2007). ArticlePubMed Google Scholar
Aizenstein, H. J. et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol.65, 1509–1517 (2008). ArticlePubMedPubMed Central Google Scholar
Small, G. W. et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med.355, 2652–2663 (2006). ArticleCASPubMed Google Scholar
Waragai, M. et al. Comparison study of amyloid PET and voxel-based morphometry analysis in mild cognitive impairment and Alzheimer's disease. J. Neurol. Sci.285, 100–108 (2009). ArticlePubMed Google Scholar
Rowe, C. C. et al. Imaging of amyloid β in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol.7, 129–135 (2008). ArticleCASPubMed Google Scholar
Tolboom, N. et al. Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J. Nucl. Med.50, 191–197 (2009). ArticlePubMed Google Scholar
Thompson, P. W. et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer's disease pathologies. J. Neurochem.109, 623–630 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shoghi-Jadid, K. et al. Localization of neurofibrillary tangles and β-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry10, 24–35 (2002). ArticlePubMed Google Scholar
Walsh, D. M. & Selkoe, D. J. Aβ oligomers—a decade of discovery. J. Neurochem.101, 1172–1184 (2007). ArticleCASPubMed Google Scholar
Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet358, 461–467 (2001). ArticleCASPubMed Google Scholar
Wiley, C. A. et al. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch. Neurol.66, 60–67 (2009). ArticlePubMedPubMed Central Google Scholar
Hirsch-Reinshagen, V., Burgess, B. L. & Wellington, C. L. Why lipids are important for Alzheimer disease? Mol. Cell Biochem.326, 121–129 (2009). ArticleCASPubMed Google Scholar
Kadir, A. et al. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol. Aging29, 1204–1217 (2008). ArticleCASPubMed Google Scholar
Bohnen, N. I. et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry76, 315–319 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kuhl, D. E. et al. Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann. Neurol.48, 391–395 (2000). ArticleCASPubMed Google Scholar
Kaasinen, V. et al. Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer's disease. J. Clin. Psychopharmacol.22, 615–620 (2002). ArticleCASPubMed Google Scholar
Shinotoh, H. et al. Effect of donepezil on brain acetylcholinesterase activity in patients with AD measured by PET. Neurology56, 408–410 (2001). ArticleCASPubMed Google Scholar
Kadir, A. et al. Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer's disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berl.)191, 1005–1014 (2007). ArticleCAS Google Scholar
Ellis, J. R. et al. Galantamine-induced improvements in cognitive function are not related to alterations in α4β2 nicotinic receptors in early Alzheimer's disease as measured in vivo by 2-[18F]fluoro-A-85380 PET. Psychopharmacology (Berl.)202, 79–91 (2009). ArticleCAS Google Scholar
Diehl-Schmid, J. et al. Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement. Geriatr. Cogn. Disord.22, 346–351 (2006). ArticleCASPubMed Google Scholar
Diehl-Schmid, J. et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol. Aging28, 42–50 (2007). ArticleCASPubMed Google Scholar
Dickerson, B. C. & Sperling, R. A. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer's disease. NeuroRx2, 348–360 (2005). ArticlePubMedPubMed Central Google Scholar
Foster, N. L. et al. Realizing the potential of positron emission tomography with 18F-fluorodeoxyglucose to improve the treatment of Alzheimer's disease. Alzheimers Dement.4 (Suppl. 1), S29–S36 (2008). PubMed Google Scholar
Matthews, B., Siemers, E. R. & Mozley, P. D. Imaging-based measures of disease progression in clinical trials of disease-modifying drugs for Alzheimer disease. Am. J. Geriatr. Psychiatry11, 146–159 (2003). ArticlePubMed Google Scholar
Mega, M. S. et al. Cognitive and metabolic responses to metrifonate therapy in Alzheimer disease. Neuropsychiatry Neuropsychol. Behav. Neurol.14, 63–68 (2001). CASPubMed Google Scholar
Stefanova, E. et al. Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer's disease. J. Neural Transm.113, 205–218 (2006). ArticleCASPubMed Google Scholar
Tune, L. et al. Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study. Am. J. Geriatr. Psychiatry11, 169–177 (2003). ArticlePubMed Google Scholar
Mega, M. S. et al. Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose F 18 positron emission tomographic study. Arch. Neurol.62, 721–728 (2005). ArticlePubMed Google Scholar
Teipel, S. J. et al. Effects of donepezil on cortical metabolic response to activation during 18FDG-PET in Alzheimer's disease: a double-blind cross-over trial. Psychopharmacology (Berl.)187, 86–94 (2006). ArticleCAS Google Scholar
Kadir, A. et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease. Ann. Neurol.63, 621–631 (2008). ArticleCASPubMed Google Scholar
Smith, G. S. et al. Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer's disease. Brain132, 392–401 (2009). ArticlePubMedPubMed Central Google Scholar
Tuszynski, M. H. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med.11, 551–555 (2005). ArticleCASPubMed Google Scholar
Eriksdotter Jonhagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord.9, 246–257 (1998). ArticleCASPubMed Google Scholar
Lahiri, D. K. et al. The experimental Alzheimer's disease drug posiphen[(+)-phenserine] lowers amyloid-β peptide levels in cell culture and mice. J. Pharmacol. Exp. Ther.320, 386–396 (2007). ArticleCASPubMed Google Scholar
Marutle, A. et al. Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine. Proc. Natl Acad. Sci. USA104, 12506–12511 (2007). ArticleCASPubMedPubMed Central Google Scholar
Razifar, P. et al. An automated method for delineating a reference region using masked volumewise principal-component analysis in 11C-PIB PET. J. Nucl. Med. Technol.37, 38–44 (2009). ArticlePubMed Google Scholar
Razifar, P., Ringheim, A., Engler, H., Hall, H. & Långström, B. Masked-volume-wise PCA and “reference Logan” illustrate similar regional differences in kinetic behavior in human brain PET study using [11C]-PIB. BMC Neurol.9, 2 (2009). ArticlePubMedPubMed Central Google Scholar
Petersen, R. C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med.256, 183–194 (2004). ArticleCASPubMed Google Scholar
Roivainen, A. et al. Biodistribution and blood metabolism of 1-11C-methyl-4-piperidinyl n-butyrate in humans: an imaging agent for in vivo assessment of butyrylcholinesterase activity with PET. J. Nucl. Med.45, 2032–2039 (2004). CASPubMed Google Scholar
Nelissen, N. et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J. Nucl. Med.50, 1251–1259 (2009). ArticleCASPubMed Google Scholar
Verhoeff, N. P. et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry12, 584–595 (2004). PubMed Google Scholar
Kudo, Y. et al. 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer's disease patients. J. Nucl. Med.48, 553–561 (2007). ArticleCASPubMed Google Scholar
Choi, S. R. et al. Preclinical properties of 18F-AV-45: a PET agent for Aβ plaques in the brain. J. Nucl. Med.50, 1887–1894 (2009). ArticleCASPubMed Google Scholar
Nyberg, S. et al. Detection of amyloid in Alzheimer's disease with positron emission tomography using [11C]AZD2184. Eur. J. Nucl. Med. Mol. Imaging36, 1859–1863 (2009). ArticlePubMedPubMed Central Google Scholar