McKhann, G. et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology34, 939–944 (1984). CASPubMed Google Scholar
Ferri, C. P. et al. Global prevalence of dementia: a Delphi consensus study. Lancet366, 2112–2117 (2005). PubMedPubMed Central Google Scholar
Pendlebury, S. T. & Rothwell, P. M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol.8, 1006–1018 (2009). PubMed Google Scholar
Cheung, Z. H., Gong, K. & Ip, N. Y. Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J. Neurosci.28, 4872–4877 (2008). CASPubMedPubMed Central Google Scholar
Weishaupt, J. H. et al. Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol. Cell. Neurosci.24, 489–502 (2003). CASPubMed Google Scholar
Wen, Y. et al. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim. Biophys. Acta1772, 473–483 (2007). CASPubMed Google Scholar
Kivipelto, M. et al. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology56, 1683–1689 (2001). CASPubMed Google Scholar
Launer, L. J., Masaki, K., Petrovitch, H., Foley, D. & Havlik, R. J. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu–Asia Aging Study. JAMA274, 1846–1851 (1995). CASPubMed Google Scholar
Swan, G. E., Carmelli, D. & Larue, A. Systolic blood pressure tracking over 25 to 30 years and cognitive performance in older adults. Stroke29, 2334–2340 (1998). CASPubMed Google Scholar
Whitmer, R. A., Sidney, S., Selby, J., Johnston, S. C. & Yaffe, K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology64, 277–281 (2005). CASPubMed Google Scholar
Glynn, R. J. et al. Current and remote blood pressure and cognitive decline. JAMA281, 438–445 (1999). CASPubMed Google Scholar
Knopman, D. et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology56, 42–48 (2001). CASPubMed Google Scholar
Posner, H. B. et al. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology58, 1175–1181 (2002). CASPubMed Google Scholar
Skoog, I. et al. 15-year longitudinal study of blood pressure and dementia. Lancet347, 1141–1145 (1996). CASPubMed Google Scholar
Kalaria, R. N. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr. Rev.68 (Suppl. 2), S74–S87 (2010). PubMed Google Scholar
Deane, R., Wu, Z. & Zlokovic, B. V. RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke35, 2628–2631 (2004). CASPubMed Google Scholar
Forette, F. et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur.) study. Arch. Intern. Med.162, 2046–2052 (2002). PubMed Google Scholar
Tzourio, C. et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med.163, 1069–1075 (2003). CASPubMed Google Scholar
Starr, J. M., Whalley, L. J. & Deary, I. J. The effects of antihypertensive treatment on cognitive function: results from the HOPE study. J. Am. Geriatr. Soc.44, 411–415 (1996). CASPubMed Google Scholar
Prince, M. J., Bird, A. S., Blizard, R. A. & Mann, A. H. Is the cognitive function of older patients affected by antihypertensive treatment? Results from 54 months of the Medical Research Council's trial of hypertension in older adults. BMJ312, 801–805 (1996). CASPubMedPubMed Central Google Scholar
[No authors listed] Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA265, 3255–3264 (1991).
Lithell, H. et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J. Hypertens.21, 875–886 (2003). CASPubMed Google Scholar
Peters, R. et al. Association of depression with subsequent mortality, cardiovascular morbidity and incident dementia in people aged 80 and over and suffering from hypertension. Data from the Hypertension in the Very Elderly Trial (HYVET). Age Ageing39, 439–445 (2010). PubMed Google Scholar
Leibson, C. L. et al. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann. N. Y. Acad. Sci.826, 422–427 (1997). CASPubMed Google Scholar
Luchsinger, J. A., Tang, M. X., Stern, Y., Shea, S. & Mayeux, R. Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol.154, 635–641 (2001). CASPubMed Google Scholar
Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology53, 1937–1942 (1999). CASPubMed Google Scholar
Craft, S. Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer Res.4, 147–152 (2007). CASPubMed Google Scholar
Cook, D. G. et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-ɛ4 allele. Am. J. Pathol.162, 313–319 (2003). CASPubMedPubMed Central Google Scholar
Yamagishi, S., Nakamura, K., Inoue, H., Kikuchi, S. & Takeuchi, M. Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease. Med. Hypotheses64, 1205–1207 (2005). CASPubMed Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). CASPubMed Google Scholar
Harvey, J., Solovyova, N. & Irving, A. Leptin and its role in hippocampal synaptic plasticity. Prog. Lipid Res.45, 369–378 (2006). CASPubMedPubMed Central Google Scholar
Li, X. L. et al. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience113, 607–615 (2002). CASPubMed Google Scholar
Lieb, W. et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA302, 2565–2572 (2009). CASPubMedPubMed Central Google Scholar
Profenno, L. A, Porsteinsson, A. P. & Faraone, S. V. Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biol. Psychiatry67, 505–512 (2010). PubMed Google Scholar
Janson, J. et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes53, 474–481 (2004). CASPubMed Google Scholar
Peila, R., Rodriguez, B. L. & Launer, L. J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu–Asia Aging Study. Diabetes51, 1256–1262 (2002). CASPubMed Google Scholar
Arvanitakis, Z. et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology67, 1960–1965 (2006). CASPubMed Google Scholar
Reger, M. A. et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol. Aging27, 451–458 (2006). CASPubMed Google Scholar
Watson, G. S. et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry13, 950–958 (2005). PubMed Google Scholar
Risner, M. E. et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J.6, 246–254 (2006). CASPubMed Google Scholar
Sato, T. et al. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2009.10.009. CASPubMed Google Scholar
Jiang, Q., Heneka, M. & Landreth, G. E. The role of peroxisome proliferator-activated receptor-gamma (PPARγ) in Alzheimer's disease: therapeutic implications. CNS Drugs22, 1–14 (2008). CASPubMed Google Scholar
Grundman, M., Corey-Bloom, J., Jernigan, T., Archibald, S. & Thal, L. J. Low body weight in Alzheimer's disease is associated with mesial temporal cortex atrophy. Neurology46, 1585–1591 (1996). CASPubMed Google Scholar
White, H., Pieper, C. & Schmader, K. The association of weight change in Alzheimer's disease with severity of disease and mortality: a longitudinal analysis. J. Am. Geriatr. Soc.46, 1223–1227 (1998). CASPubMed Google Scholar
Gustafson, D., Rothenberg, E., Blennow, K., Steen, B. & Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch. Intern. Med.163, 1524–1528 (2003). PubMed Google Scholar
Razay, G. & Vreugdenhil, A. Obesity in middle age and future risk of dementia: midlife obesity increases risk of future dementia. BMJ331, 455 (2005). PubMedPubMed Central Google Scholar
Stewart, R. et al. A 32-year prospective study of change in body weight and incident dementia: the Honolulu–Asia Aging Study. Arch. Neurol.62, 55–60 (2005). PubMed Google Scholar
Gustafson, D. R. et al. Adiposity indicators and dementia over 32 years in Sweden. Neurology73, 1559–1566 (2009). CASPubMedPubMed Central Google Scholar
Whitmer, R. A. et al. Central obesity and increased risk of dementia more than three decades later. Neurology71, 1057–1064 (2008). CASPubMed Google Scholar
Muckle, T. J. & Roy., J. R. High-density lipoprotein cholesterol in differential diagnosis of senile dementia. Lancet1, 1191–1193 (1985). CASPubMed Google Scholar
Kuo, Y. M. et al. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain Aβ 1–42 levels. Biochem. Biophys. Res. Commun.252, 711–715 (1998). CASPubMed Google Scholar
Michikawa, M. Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer's disease? J. Neurosci. Res.72, 141–146 (2003). CASPubMed Google Scholar
Wieringa, G. E. et al. Apolipoprotein E genotypes and serum lipid levels in Alzheimer's disease and multi-infarct dementia. Int. J. Geriatr. Psychiatry12, 359–362 (1997). CASPubMed Google Scholar
van Exel, E. et al. Association between high-density lipoprotein and cognitive impairment in the oldest old. Ann. Neurol.51, 716–721 (2002). CASPubMed Google Scholar
Lesser, G. et al. Elevated serum total and LDL cholesterol in very old patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord.12, 138–145 (2001). CASPubMed Google Scholar
Burns, M. & Duff, K. Cholesterol in Alzheimer's disease and tauopathy. Ann. N. Y. Acad. Sci.977, 367–375 (2002). CASPubMed Google Scholar
Jones, R. W. et al. The Atorvastatin/Donepezil in Alzheimer's Disease Study (LEADe): design and baseline characteristics. Alzheimers Dement.4, 145–153 (2008). CASPubMed Google Scholar
Simons, M. et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol.52, 346–350 (2002). CASPubMed Google Scholar
Sparks, D. L. et al. Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer's disease: results of the Alzheimer's Disease Cholesterol-Lowering Treatment (ADCLT) trial. Acta Neurol. Scand. Suppl.185, 3–7 (2006). CASPubMed Google Scholar
Sano, M. Multi-center, randomized, double-blind, placebo-controlled trial of simvatatin to slow the progression of Alzheimer's disease. Alzheimers Dement.4 (Suppl. 2), T200 (2008). Google Scholar
Raffaitin, C. et al. Metabolic syndrome and risk for incident Alzheimer's disease or vascular dementia: the Three-City Study. Diabetes Care32, 169–174 (2009). PubMedPubMed Central Google Scholar
Solfrizzi, V. et al. Metabolic syndrome and the risk of vascular dementia: the Italian Longitudinal Study on Ageing. J. Neurol. Neurosurg. Psychiatry81, 433–440 (2010). PubMed Google Scholar
Yaffe, K., Weston, A. L., Blackwell, T. & Krueger, K. A. The metabolic syndrome and development of cognitive impairment among older women. Arch. Neurol.66, 324–328 (2009). PubMedPubMed Central Google Scholar
Tyas, S. L. Are tobacco and alcohol use related to Alzheimer's disease? A critical assessment of the evidence and its implications. Addict. Biol.1, 237–254 (1996). CASPubMed Google Scholar
Brenner, D. E. et al. Relationship between cigarette smoking and Alzheimer's disease in a population-based case–control study. Neurology43, 293–300 (1993). CASPubMed Google Scholar
Ferini-Strambi, L., Smirne, S., Garancini, P., Pinto, P. & Franceschi, M. Clinical and epidemiological aspects of Alzheimer's disease with presenile onset: a case control study. Neuroepidemiology9, 39–49 (1990). CASPubMed Google Scholar
Merchant, C. et al. The influence of smoking on the risk of Alzheimer's disease. Neurology52, 1408–1412 (1999). CASPubMed Google Scholar
Launer, L. J. et al. Rates and risk factors for dementia and Alzheimer's disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology52, 78–84 (1999). CASPubMed Google Scholar
Ott, A. et al. Smoking and risk of dementia and Alzheimer's disease in a population-based cohort study: the Rotterdam Study. Lancet351, 1840–1843 (1998). CASPubMed Google Scholar
Doll, R., Peto, R., Boreham, J. & Sutherland, I. Smoking and dementia in male British doctors: prospective study. BMJ320, 1097–1102 (2000). CASPubMedPubMed Central Google Scholar
Hebert, L. E. et al. Relation of smoking and alcohol consumption to incident Alzheimer's disease. Am. J. Epidemiol.135, 347–355 (1992). CASPubMed Google Scholar
Cataldo, J. K., Prochaska, J. J. & Glantz, S. A. Cigarette smoking is a risk factor for Alzheimer's disease: an analysis controlling for tobacco industry affiliation. J. Alzheimers Dis.19, 465–480 (2010). PubMedPubMed Central Google Scholar
Traber, M. G., van der Vliet, A., Reznick, A. Z. & Cross, C. E. Tobacco-related diseases. Is there a role for antioxidant micronutrient supplementation? Clin. Chest Med.21, 173–187 (2000). CASPubMed Google Scholar
Kellar, K. J. & Wonnacott, S. in Nicotine Psychopharmacology: Molecular, Cellular, and Behavioral Aspects (eds Wonnacott, S., Russell, M. A. & Stolerman, I. P) 341–373 (Oxford University Press, Oxford, 1990). Google Scholar
Jorm, A. F. History of depression as a risk factor for dementia: an updated review. Aust. NZ J. Psychiatry35, 776–781 (2001). CAS Google Scholar
Barnes, D. E., Alexopoulos, G. S., Lopez, O. L., Williamson, J. D. & Yaffe, K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch. Gen. Psychiatry63, 273–279 (2006). PubMed Google Scholar
Becker, J. T. et al. Depressed mood is not a risk factor for incident dementia in a community-based cohort. Am. J. Geriatr. Psychiatry17, 653–663 (2009). PubMedPubMed Central Google Scholar
Panza, F. et al. Impact of depressive symptoms on the rate of progression to dementia in patients affected by mild cognitive impairment. The Italian Longitudinal Study on Aging. Int. J. Geriatr. Psychiatry23, 726–734 (2008). PubMed Google Scholar
Aleisa, A. M., Alzoubi, K. H., Gerges, N. Z. & Alkadhi, K. A. Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiol. Dis.22, 453–462 (2006). CASPubMed Google Scholar
Mayeux, R. et al. Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer's disease. Neurology45, 555–557 (1995). CASPubMed Google Scholar
Rasmusson, D. X., Brandt, J., Martin, D. B. & Folstein, M. F. Head injury as a risk factor in Alzheimer's disease. Brain Inj.9, 213–219 (1995). CASPubMed Google Scholar
Schofield, P. W. et al. Alzheimer's disease after remote head injury: an incidence study. J. Neurol. Neurosurg. Psychiatry62, 119–124 (1997). CASPubMedPubMed Central Google Scholar
Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S. & Giora, A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry74, 857–862 (2003). CASPubMedPubMed Central Google Scholar
Mortimer, J. A. et al. Head trauma as a risk factor for Alzheimer's disease: a collaborative re-analysis of case–control studies. EURODEM Risk Factors Research Group. Int. J. Epidemiol.20 (Suppl. 2), S28–S35 (1991). PubMed Google Scholar
Guo, Z. et al. Head injury and the risk of AD in the MIRAGE study. Neurology54, 1316–1323 (2000). CASPubMed Google Scholar
Mehta, K. M. et al. Head trauma and risk of dementia and Alzheimer's disease: the Rotterdam Study. Neurology53, 1959–1962 (1999). CASPubMed Google Scholar
Plassman, B. L. et al. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology55, 1158–1166 (2000). CASPubMed Google Scholar
Hartman, R. E. et al. Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease. J. Neurosci.22, 10083–10087 (2002). CASPubMedPubMed Central Google Scholar
Franz, G. et al. Amyloid β 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology60, 1457–1461 (2003). CASPubMed Google Scholar
Morris, M. C. et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA287, 3230–3237 (2002). CASPubMed Google Scholar
Engelhart, M. J. et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA287, 3223–3229 (2002). CASPubMed Google Scholar
Masaki, K. H. et al. Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology54, 1265–1272 (2000). CASPubMed Google Scholar
Laurin, D., Masaki, K. H., Foley, D. J., White, L. R. & Launer, L. J. Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu–Asia Aging Study. Am. J. Epidemiol.159, 959–967 (2004). PubMed Google Scholar
Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch. Neurol.60, 203–208 (2003). PubMed Google Scholar
Huang, T. L. et al. Benefits of fatty fish on dementia risk are stronger for those without APOE ɛ4. Neurology65, 1409–1414 (2005). CASPubMed Google Scholar
Kalmijn, S. et al. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol.42, 776–782 (1997). CASPubMed Google Scholar
Schaefer, E. J. et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol.63, 1545–1550 (2006). PubMed Google Scholar
Roberts, R. O. et al. Polyunsaturated fatty acids and reduced odds of MCI: the Mayo Clinic Study of Aging. J. Alzheimers Dis.21, 853–865. CASPubMed Google Scholar
Solfrizzi, V. et al. Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiol. Aging27, 1694–1704 (2006). CASPubMed Google Scholar
Engelhart, M. J. et al. Diet and risk of dementia: does fat matter?: The Rotterdam Study. Neurology59, 1915–1921 (2002). CASPubMed Google Scholar
Scarmeas, N., Stern, Y., Tang, M. X., Mayeux, R. & Luchsinger, J. A. Mediterranean diet and risk for Alzheimer's disease. Ann. Neurol.59, 912–921 (2006). PubMedPubMed Central Google Scholar
Scarmeas, N., Stern, Y., Mayeux, R. & Luchsinger, J. A. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch. Neurol.63, 1709–1717 (2006). PubMedPubMed Central Google Scholar
Feart, C. et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA302, 638–648 (2009). CASPubMedPubMed Central Google Scholar
Anstey, K. J., Mack, H. A. & Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am. J. Geriatr. Psychiatry17, 542–555 (2009). PubMed Google Scholar
Kang, J. H., Cook, N., Manson, J., Buring, J. E. & Grodstein, F. A randomized trial of vitamin E supplementation and cognitive function in women. Arch. Intern. Med.166, 2462–2468 (2006). CASPubMed Google Scholar
Yaffe, K., Clemons, T. E., McBee, W. L. & Lindblad, A. S. Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial. Neurology63, 1705–1707 (2004). CASPubMed Google Scholar
Petersen, R. C. et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med.352, 2379–2388 (2005). CASPubMed Google Scholar
Sano, M. et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med.336, 1216–1222 (1997). CASPubMed Google Scholar
Chiu, C. C. et al. The effects of omega-3 fatty acids monotherapy in Alzheimer's disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry32, 1538–1544 (2008). CASPubMed Google Scholar
Freund-Levi, Y. et al. Effects of omega-3 fatty acids on inflammatory markers in cerebrospinal fluid and plasma in Alzheimer's disease: the OmegAD study. Dement. Geriatr. Cogn. Disord.27, 481–490 (2009). CASPubMed Google Scholar
Nagano, S. et al. Peroxidase activity of cyclooxygenase-2 (COX-2) cross-links β-amyloid (Aβ) and generates Aβ–COX-2 hetero-oligomers that are increased in Alzheimer's disease. J. Biol. Chem.279, 14673–14678 (2004). CASPubMed Google Scholar
Butterfield, D. A., Castegna, A., Drake, J., Scapagnini, G. & Calabrese, V. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr. Neurosci.5, 229–239 (2002). CASPubMed Google Scholar
Pitchumoni, S. S. & Doraiswamy, P. M. Current status of antioxidant therapy for Alzheimer's Disease. J. Am. Geriatr. Soc.46, 1566–1572 (1998). CASPubMed Google Scholar
Weisburger, J. H. Vitamin C and prevention of nitrosamine formation. Lancet2, 607 (1977). CASPubMed Google Scholar
Pardo, B., Mena, M. A., Fahn, S. & Garcia de Yebenes, J. Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Mov. Disord.8, 278–284 (1993). CASPubMed Google Scholar
Voko, Z., Hollander, M., Hofman, A., Koudstaal, P. J. & Breteler, M. M. Dietary antioxidants and the risk of ischemic stroke: the Rotterdam Study. Neurology61, 1273–1275 (2003). CASPubMed Google Scholar
Calder, P. C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids36, 1007–1024 (2001). CASPubMed Google Scholar
Yehuda, S., Rabinovitz, S., Carasso, R. L. & Mostofsky, D. I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging23, 843–853 (2002). CASPubMed Google Scholar
Abbott, R. D. et al. Walking and dementia in physically capable elderly men. JAMA292, 1447–1453 (2004). CASPubMed Google Scholar
Fratiglioni, L., Paillard-Borg, S. & Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol.3, 343–353 (2004). PubMed Google Scholar
Scarmeas, N., Levy, G., Tang, M. X., Manly, J. & Stern, Y. Influence of leisure activity on the incidence of Alzheimer's disease. Neurology57, 2236–2242 (2001). CASPubMed Google Scholar
Verghese, J. et al. Leisure activities and the risk of dementia in the elderly. N. Engl. J. Med.348, 2508–2516 (2003). PubMed Google Scholar
Rovio, S. et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurol.4, 705–711 (2005). PubMed Google Scholar
Churchill, J. D. et al. Exercise, experience and the aging brain. Neurobiol. Aging23, 941–955 (2002). PubMed Google Scholar
Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci.14, 125–130 (2003). PubMed Google Scholar
Dishman, R. K. et al. Neurobiology of exercise. Obesity14, 345–356 (2006). CASPubMed Google Scholar
Emery, C. F., Schein, R. L., Hauck, E. R. & MacIntyre, N. R. Psychological and cognitive outcomes of a randomized trial of exercise among patients with chronic obstructive pulmonary disease. Health Psychol.17, 232–240 (1998). CASPubMed Google Scholar
Fabre, C., Chamari, K., Mucci, P., Masse-Biron, J. & Prefaut, C. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int. J. Sports Med.23, 415–421 (2002). CASPubMed Google Scholar
Kramer, A. F., Erickson, K. I. & Colcombe, S. J. Exercise, cognition, and the aging brain. J. Appl. Physiol.101, 1237–1242 (2006). PubMed Google Scholar
Lautenschlager, N. T. et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA300, 1027–1037 (2008). CASPubMed Google Scholar
Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A. & Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD005381. doi:10.1002/14651858. CD005381.pub3 (2008).
Carlson, M. C. et al. Midlife activity predicts risk of dementia in older male twin pairs. Alzheimers Dement.4, 324–331 (2008). PubMedPubMed Central Google Scholar
Fratiglioni, L. & Wang, H. X. Brain reserve hypothesis in dementia. J. Alzheimers Dis.12, 11–22 (2007). PubMed Google Scholar
Acevedo, A. & Loewenstein, D. A. Nonpharmacological cognitive interventions in aging and dementia. J. Geriatr. Psychiatry Neurol.20, 239–249 (2007). PubMed Google Scholar
Ball, K. et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA288, 2271–2281 (2002). PubMedPubMed Central Google Scholar
Unverzagt, F. W. et al. Effect of memory impairment on training outcomes in ACTIVE. J. Int. Neuropsychol. Soc.13, 953–960 (2007). PubMedPubMed Central Google Scholar
De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature391, 387–390 (1998). CASPubMed Google Scholar
Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med.2, 864–870 (1996). CASPubMed Google Scholar
Green, R. C. et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA287, 329–336 (2002). PubMed Google Scholar
Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry63, 168–174 (2006). PubMed Google Scholar
Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science261, 921–923 (1993). CASPubMed Google Scholar
Kurz, A. et al. Apolipoprotein E type 4 allele and Alzheimer's disease: effect on age at onset and relative risk in different age groups. J. Neurol.243, 452–456 (1996). CASPubMed Google Scholar
Poirier, J. et al. Apolipoprotein E polymorphism and Alzheimer's disease. Lancet342, 697–699 (1993). CASPubMed Google Scholar
Farlow, M. R. et al. Impact of APOE in mild cognitive impairment. Neurology63, 1898–1901 (2004). CASPubMed Google Scholar
Myers, R. H. et al. Apolipoprotein E ɛ4 association with dementia in a population-based study: the Framingham study. Neurology46, 673–677 (1996). CASPubMed Google Scholar
Daw, E. W. et al. The number of trait loci in late-onset Alzheimer disease. Am. J. Hum. Genet.66, 196–204 (2000). CASPubMed Google Scholar
Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet.39, 168–177 (2007). CASPubMed Google Scholar
Reitz, C. et al. Meta-analysis of the association between variants in SORL1 and Alzheimer's disease. Arch. Neurol.68, 99–106 (2011). PubMedPubMed Central Google Scholar
Reitz, C. et al. SORCS1 alters APP processing and variants may increase Alzheimer's disease risk. Ann. Neurol. doi:10.1002/ana.22308. CASPubMedPubMed Central Google Scholar
Lane, R. et al. Diabetes-associated SorCS1 regulates Alzheimer's amyloid-β metabolism: evidence for involvement of SorL1 and the retromer complex. J. Neurosci.30, 13110–13115 (2010). CASPubMedPubMed Central Google Scholar
Beecham, G. W. et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am. J. Hum. Genet.84, 35–43 (2009). CASPubMedPubMed Central Google Scholar
Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet.39, 17–23 (2007). CASPubMed Google Scholar
Carrasquillo, M. M. et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nat. Genet.41, 192–198 (2009). CASPubMedPubMed Central Google Scholar
Potkin, S. G. et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease. PLoS One4, e6501 (2009). PubMedPubMed Central Google Scholar
Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet.41, 1088–1093 (2009). CASPubMedPubMed Central Google Scholar
Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet.41, 1094–1099 (2009). CASPubMed Google Scholar
Bertrand, P., Poirier, J., Oda, T., Finch, C. E. & Pasinetti, G. M. Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Brain Res. Mol. Brain Res.33, 174–178 (1995). CASPubMed Google Scholar
Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl Acad. Sci. USA99, 10837–10842 (2002). CASPubMedPubMed Central Google Scholar
Baig, S. et al. Distribution and expression of picalm in Alzheimer disease. J. Neuropathol. Exp. Neurol.69, 1071–1077 (2010). CASPubMed Google Scholar
Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA303, 1832–1840 (2010). CASPubMedPubMed Central Google Scholar
Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell8, 2003–2015 (1997). CASPubMedPubMed Central Google Scholar
Kelly, B. L. & Ferreira, A. Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience147, 60–70 (2007). CASPubMed Google Scholar
Yang, S. et al. Comparative proteomic analysis of brains of naturally aging mice. Neuroscience154, 1107–1120 (2008). CASPubMed Google Scholar
Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell89, 297–308 (1997). CASPubMed Google Scholar
Starcevic, M. & Dell'Angelica, E. C. Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem.279, 28393–28401 (2004). CASPubMed Google Scholar
Morris, D. W. et al. Dysbindin (DTNBP1) and the biogenesis of lysosome-related organelles complex 1 (BLOC-1): main and epistatic gene effects are potential contributors to schizophrenia susceptibility. Biol. Psychiatry63, 24–31 (2008). CASPubMed Google Scholar
Hansson, O. et al. Prediction of Alzheimer's disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord.23, 316–320 (2007). CASPubMed Google Scholar
Ewers, M. et al. Multicenter assessment of CSF-phosphorylated tau for the prediction of conversion of MCI. Neurology69, 2205–2212 (2007). CASPubMed Google Scholar
Andersson, C. et al. Differential CSF biomarker levels in _APOE_-ɛ4-positive and -negative patients with memory impairment. Dement. Geriatr. Cogn. Disord.23, 87–95 (2007). CASPubMed Google Scholar
Hoglund, K. et al. Prediction of Alzheimer's disease using a cerebrospinal fluid pattern of C-terminally truncated β-amyloid peptides. Neurodegener. Dis.5, 268–276 (2008). CASPubMed Google Scholar
Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol.59, 512–519 (2006). CASPubMed Google Scholar
Buerger, K. et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain129, 3035–3041 (2006). PubMed Google Scholar
Buerger, K. et al. No correlation between CSF tau protein phosphorylated at threonine 181 with neocortical neurofibrillary pathology in Alzheimer's disease. Brain130, e82 (2007). PubMed Google Scholar
Engelborghs, S. et al. No association of CSF biomarkers with APOEɛ4, plaque and tangle burden in definite Alzheimer's disease. Brain130, 2320–2326 (2007). PubMed Google Scholar
Fukumoto, H. et al. Age but not diagnosis is the main predictor of plasma amyloid β-protein levels. Arch. Neurol.60, 958–964 (2003). PubMed Google Scholar
Shafaati, M., Solomon, A., Kivipelto, M., Bjorkhem, I. & Leoni, V. Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitive disorders. Neurosci. Lett.425, 78–82 (2007). CASPubMed Google Scholar
Schmand, B., Huizenga, H. M. & van Gool, W. A. Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer's disease. Psychol. Med.40, 135–145 (2010). CASPubMed Google Scholar
Kosaka, T. et al. The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology48, 741–745 (1997). CASPubMed Google Scholar
Schupf, N. et al. Elevated plasma amyloid β-peptide 1–42 and onset of dementia in adults with Down syndrome. Neurosci. Lett.301, 199–203 (2001). CASPubMed Google Scholar
Mayeux, R. et al. Plasma Aβ40 and Aβ42 and Alzheimer's disease: relation to age, mortality, and risk. Neurology61, 1185–1190 (2003). CASPubMed Google Scholar
van Oijen, M., Hofman, A., Soares, H. D., Koudstaal, P. J. & Breteler, M. M. Plasma Aβ1–40 and Aβ1–42 and the risk of dementia: a prospective case–cohort study. Lancet Neurol.5, 655–660 (2006). CASPubMed Google Scholar
Lopez, O. L. et al. Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology70, 1664–1671 (2008). CASPubMed Google Scholar
Lui, J. K. et al. Plasma amyloid-β as a biomarker in Alzheimer's disease: the AIBL study of aging. J. Alzheimers Dis.20, 1233–1242 (2010). CASPubMed Google Scholar
Schupf, N. et al. Peripheral Aβ subspecies as risk biomarkers of Alzheimer's disease. Proc. Natl Acad. Sci. USA105, 14052–14057 (2008). CASPubMedPubMed Central Google Scholar
Teipel, S. J. et al. Relation of corpus callosum and hippocampal size to age in nondemented adults with Down's syndrome. Am. J. Psychiatry160, 1870–1878 (2003). PubMed Google Scholar
Karas, G. et al. Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology49, 967–976 (2007). PubMed Google Scholar
Krasuski, J. S. et al. Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biol. Psychiatry43, 60–68 (1998). CASPubMed Google Scholar
Mungas, D. et al. Longitudinal volumetric MRI change and rate of cognitive decline. Neurology65, 565–571 (2005). CASPubMed Google Scholar
Apostolova, L. G. et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch. Neurol.63, 693–699 (2006). PubMed Google Scholar
Likeman, M. et al. Visual assessment of atrophy on magnetic resonance imaging in the diagnosis of pathologically confirmed young-onset dementias. Arch. Neurol.62, 1410–1415 (2005). PubMed Google Scholar
Chetelat, G. et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage27, 934–946 (2005). CASPubMed Google Scholar
Rombouts, S. A. et al. Functional MR imaging in Alzheimer's disease during memory encoding. AJNR Am. J. Neuroradiol.21, 1869–1875 (2000). CASPubMedPubMed Central Google Scholar
Small, G. W. et al. Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol.7, 161–172 (2008). PubMedPubMed Central Google Scholar
Silverman, D. H. et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA286, 2120–2127 (2001). CASPubMed Google Scholar
O'Brien, J. T. Role of imaging techniques in the diagnosis of dementia. Br. J. Radiol.80, S71–S77 (2007). PubMed Google Scholar
Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol.55, 306–319 (2004). CASPubMed Google Scholar
Engler, H. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain129, 2856–2866 (2006). PubMed Google Scholar
Frisoni, G. B. et al. In vivo mapping of amyloid toxicity in Alzheimer disease. Neurology72, 1504–1511 (2009). CASPubMed Google Scholar
Tolboom, N. et al. Differential association of [11C]PIB and [18F]FDDNP binding with cognitive impairment. Neurology73, 2079–2085 (2009). CASPubMed Google Scholar
Katzman, R. Editorial: the prevalence and malignancy of Alzheimer disease. A major killer. Arch. Neurol.33, 217–218 (1976). CASPubMed Google Scholar