What's new in our understanding of the role of adipokines in rheumatic diseases? (original) (raw)
Lago, F., Dieguez, C., Gomez-Reino, J. & Gualillo, O. Adipokines as emerging mediators of immune response and inflammation. Nat. Clin. Pract. Rheumatol.3, 716–724 (2007). ArticleCASPubMed Google Scholar
Lee, S. W., Park, M. C., Park, Y. B. & Lee, S. K. Measurement of the serum leptin level could assist disease activity monitoring in rheumatoid arthritis. Rheumatol. Int.27, 537–540 (2007). ArticleCASPubMed Google Scholar
Targonska-Stepniak, B., Majdan, M. & Dryglewska, M. Leptin serum levels in rheumatoid arthritis patients: relation to disease duration and activity. Rheumatol. Int.28, 585–591 (2008). ArticleCASPubMed Google Scholar
Targonska-Stepniak, B., Dryglewska, M. & Majdan, M. Adiponectin and leptin serum concentrations in patients with rheumatoid arthritis. Rheumatol. Int.30, 731–737 (2010). ArticleCASPubMed Google Scholar
Olama, S. M., Senna, M. K. & Elarman, M. Synovial/serum leptin ratio in rheumatoid arthritis: the association with activity and erosion. Rheumatol. Int. doi:10.1007/s00296-010-1698-5.
Rho, Y. H. et al. Adipocytokines are associated with radiographic joint damage in rheumatoid arthritis. Arthritis Rheum.60, 1906–1914 (2009). ArticleCASPubMedPubMed Central Google Scholar
Loeser, R. F. Systemic and local regulation of articular cartilage metabolism: where does leptin fit in the puzzle? Arthritis Rheum.48, 3009–3012 (2003). ArticleCASPubMed Google Scholar
Popa, C. et al. Circulating leptin and adiponectin concentrations during tumor necrosis factor blockade in patients with active rheumatoid arthritis. J. Rheumatol.36, 724–730 (2009). ArticleCASPubMed Google Scholar
Derdemezis, C. S. et al. Effects of a 6-month infliximab treatment on plasma levels of leptin and adiponectin in patients with rheumatoid arthritis. Fundam. Clin. Pharmacol.23, 595–600 (2009). ArticleCASPubMed Google Scholar
Gonzalez-Gay, M. A. et al. Short-term effect of anti-TNF-alpha therapy on nitric oxide production in patients with severe rheumatoid arthritis. Clin. Exp. Rheumatol.27, 452–458 (2009). CASPubMed Google Scholar
Engvall, I. L., Tengstrand, B., Brismar, K. & Hafstrom, I. Infliximab therapy increases body fat mass in early rheumatoid arthritis independently of changes in disease activity and levels of leptin and adiponectin: a randomised study over 21 months. Arthritis Res. Ther.12, R197 (2010). ArticleCASPubMedPubMed Central Google Scholar
Otero, M., Gomez Reino, J. J. & Gualillo, O. Synergistic induction of nitric oxide synthase type II: in vitro effect of leptin and interferon-γ in human chondrocytes and ATDC5 chondrogenic cells. Arthritis Rheum.48, 404–409 (2003). ArticleCASPubMed Google Scholar
Otero, M., Lago, R., Lago, F., Reino, J. J. & Gualillo, O. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res. Ther.7, R581–R591 (2005). ArticlePubMedPubMed Central Google Scholar
Otero, M. et al. Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes. Life Sci.81, 1452–1460 (2007). ArticleCASPubMed Google Scholar
Kitahara, K., Kusunoki, N., Kakiuchi, T., Suguro, T. & Kawai, S. Adiponectin stimulates IL-8 production by rheumatoid synovial fibroblasts. Biochem. Biophys. Res. Commun.378, 218–223 (2009). ArticleCASPubMed Google Scholar
Tong, K. M. et al. Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-κB/p300 binding in human synovial fibroblasts. Cell. Signal.20, 1478–1488 (2008). ArticleCASPubMed Google Scholar
Notley, C. A. & Ehrenstein, M. R. The yin and yang of regulatory T cells and inflammation in RA. Nat. Rev. Rheumatol.6, 572–577 (2010). ArticleCASPubMed Google Scholar
Matarese, G., Leiter, E. H. & La Cava, A. Leptin in autoimmunity: many questions, some answers. Tissue Antigens70, 87–95 (2007). ArticleCASPubMed Google Scholar
Matarese, G., Procaccini, C., De Rosa, V., Horvath, T. L. & La Cava, A. Regulatory T cells in obesity: the leptin connection. Trends Mol. Med.16, 247–256 (2010). ArticleCASPubMed Google Scholar
Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity33, 929–941 (2010). ArticleCASPubMedPubMed Central Google Scholar
De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity26, 241–255 (2007). ArticleCASPubMed Google Scholar
Vuolteenaho, K. et al. Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage—mediator role of NO in leptin-induced PGE2, IL-6, and IL-8 production. Mediators Inflamm.2009, 345838 (2009). ArticleCASPubMedPubMed Central Google Scholar
Griffin, T. M., Huebner, J. L., Kraus, V. B. & Guilak, F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum.60, 2935–2944 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pallu, S. et al. Obesity affects the chondrocyte responsiveness to leptin in patients with osteoarthritis. Arthritis Res. Ther.12, R112 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dumond, H. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum.48, 3118–3129 (2003). ArticleCASPubMed Google Scholar
Karsenty, G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab.4, 341–348 (2006). ArticleCASPubMed Google Scholar
Mutabaruka, M. S., Aoulad Aissa, M., Delalandre, A., Lavigne, M. & Lajeunesse, D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res. Ther.12, R20 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lago, F. et al. Cardiometabolic comorbidities and rheumatic diseases: focus on the role of fat mass and adipokines. Arthritis Care Res. (Hoboken) doi:10.1002/acr.20488.
Hahn, B. H. et al. Pro-inflammatory high-density lipoproteins and atherosclerosis are induced in lupus-prone mice by a high-fat diet and leptin. Lupus19, 913–917 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ehling, A. et al. The potential of adiponectin in driving arthritis. J. Immunol.176, 4468–4478 (2006). ArticleCASPubMed Google Scholar
Otero, M. et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis.65, 1198–1201 (2006). ArticleCASPubMedPubMed Central Google Scholar
Neumeier, M. et al. Different effects of adiponectin isoforms in human monocytic cells. J. Leukoc. Biol.79, 803–808 (2006). ArticleCASPubMed Google Scholar
Ebina, K. et al. Serum adiponectin concentrations correlate with severity of rheumatoid arthritis evaluated by extent of joint destruction. Clin. Rheumatol.28, 445–451 (2009). ArticlePubMed Google Scholar
Giles, J. T., Allison, M., Bingham, C. O. 3rd, Scott, W. M. Jr & Bathon, J. M. Adiponectin is a mediator of the inverse association of adiposity with radiographic damage in rheumatoid arthritis. Arthritis Rheum.61, 1248–1256 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nagashima, T. et al. Increase in plasma levels of adiponectin after administration of anti-tumor necrosis factor agents in patients with rheumatoid arthritis. J. Rheumatol.35, 936–938 (2008). CASPubMed Google Scholar
Tang, C. H., Chiu, Y. C., Tan, T. W., Yang, R. S. & Fu, W. M. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-κB pathway. J. Immunol.179, 5483–5492 (2007). ArticleCASPubMed Google Scholar
Choi, H. M. et al. Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators. Arthritis Res. Ther.11, R161 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kusunoki, N. et al. Adiponectin stimulates prostaglandin E2 production in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum.62, 1641–1649 (2010). ArticleCASPubMed Google Scholar
Frommer, K. W. et al. Adiponectin-mediated changes in effector cells involved in the pathophysiology of rheumatoid arthritis. Arthritis Rheum.62, 2886–2899 (2010). ArticleCASPubMed Google Scholar
Lago, R. et al. A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage16, 1101–1109 (2008). ArticleCASPubMed Google Scholar
Gómez, R. et al. Adiponectin and leptin increase IL-8 production in human chondrocytes. Ann. Rheum. Dis. doi:10.1136/ard.2010.145672.
Klein-Wieringa, I. R. et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann. Rheum. Dis.70, 851–857 (2011). ArticleCASPubMed Google Scholar
Ushiyama, T., Chano, T., Inoue, K. & Matsusue, Y. Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann. Rheum. Dis.62, 108–112 (2003). ArticleCASPubMedPubMed Central Google Scholar
Distel, E. et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum.60, 3374–3377 (2009). ArticleCASPubMed Google Scholar
Laurberg, T. B. et al. Plasma adiponectin in patients with active, early, and chronic rheumatoid arthritis who are steroid- and disease-modifying antirheumatic drug-naive compared with patients with osteoarthritis and controls. J. Rheumatol.36, 1885–1891 (2009). ArticleCASPubMed Google Scholar
Filkova, M. et al. Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis. Ann. Rheum. Dis.68, 295–296 (2009). ArticleCASPubMed Google Scholar
Honsawek, S. & Chayanupatkul, M. Correlation of plasma and synovial fluid adiponectin with knee osteoarthritis severity. Arch. Med. Res.41, 593–598 (2010). ArticleCASPubMed Google Scholar
Hao, D. et al. Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis. Rheumatol. Int. doi:10.1007/s00296-010-1516-0.
Gandhi, R., Takahashi, M., Smith, H., Rizek, R. & Mahomed, N. N. The synovial fluid adiponectin-leptin ratio predicts pain with knee osteoarthritis. Clin. Rheumatol.29, 1223–1228 (2010). ArticlePubMed Google Scholar
Forsblad d'Elia, H., Pullerits, R., Carlsten, H. & Bokarewa, M. Resistin in serum is associated with higher levels of IL-1Ra in post-menopausal women with rheumatoid arthritis. Rheumatology (Oxford)47, 1082–1087 (2008). ArticleCAS Google Scholar
Senolt, L. et al. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Ann. Rheum. Dis.66, 458–463 (2007). ArticleCASPubMed Google Scholar
Gonzalez-Gay, M. A. et al. Anti-TNF-alpha therapy modulates resistin in patients with rheumatoid arthritis. Clin. Exp. Rheumatol.26, 311–316 (2008). CASPubMed Google Scholar
Lee, J. H. et al. Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in vitro. Osteoarthritis Cartilage17, 613–620 (2009). ArticleCASPubMed Google Scholar
Zhang, Z. et al. Resistin induces expression of proinflammatory cytokines and chemokines in human articular chondrocytes via transcription and messenger RNA stabilization. Arthritis Rheum.62, 1993–2003 (2010). ArticleCASPubMedPubMed Central Google Scholar
Brentano, F. et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum.56, 2829–2839 (2007). ArticleCASPubMed Google Scholar
Busso, N. et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One3, e2267 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gosset, M. et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum.58, 1399–1409 (2008). ArticleCASPubMed Google Scholar
Wittamer, V. et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med.198, 977–985 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zabel, B. A. et al. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem.280, 34661–34666 (2005). ArticleCASPubMed Google Scholar
Bozaoglu, K. et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology148, 4687–4694 (2007). ArticleCASPubMed Google Scholar
Luangsay, S. et al. Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J. Immunol.183, 6489–6499 (2009). ArticleCASPubMed Google Scholar
Kralisch, S. et al. Interleukin-1β induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept.154, 102–106 (2009). ArticleCASPubMed Google Scholar
Triebel, S., Blaser, J., Reinke, H. & Tschesche, H. A 25 kDa α2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett.314, 386–388 (1992). ArticleCASPubMed Google Scholar
Hvidberg, V. et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett.579, 773–777 (2005). ArticleCASPubMed Google Scholar
Devireddy, L. R., Teodoro, J. G., Richard, F. A. & Green, M. R. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science293, 829–834 (2001). ArticleCASPubMed Google Scholar
Chu, S. T., Lin, H. J., Huang, H. L. & Chen, Y. H. The hydrophobic pocket of 24p3 protein from mouse uterine luminal fluid: fatty acid and retinol binding activity and predicted structural similarity to lipocalins. J. Pept. Res.52, 390–397 (1998). ArticleCASPubMed Google Scholar
Yang, J. et al. An iron delivery pathway mediated by a lipocalin. Mol. Cell10, 1045–1056 (2002). ArticleCASPubMed Google Scholar
Cowland, J. B. & Borregaard, N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics45, 17–23 (1997). ArticleCASPubMed Google Scholar
Yan, Q. W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes56, 2533–2540 (2007). ArticleCASPubMed Google Scholar
Jiang, W., Constante, M. & Santos, M. M. Anemia upregulates lipocalin 2 in the liver and serum. Blood Cells Mol. Dis.41, 169–174 (2008). ArticleCASPubMedPubMed Central Google Scholar
Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell10, 1033–1043 (2002). ArticleCASPubMed Google Scholar
Sommer, G. et al. Lipocalin-2 is induced by interleukin-1β in murine adipocytes in vitro. J. Cell Biochem.106, 103–108 (2009). ArticleCASPubMed Google Scholar
Owen, H. C., Roberts, S. J., Ahmed, S. F. & Farquharson, C. Dexamethasone-induced expression of the glucocorticoid response gene lipocalin 2 in chondrocytes. Am. J. Physiol. Endocrinol. Metab.294, E1023–E1034 (2008). ArticleCASPubMed Google Scholar
Gupta, K., Shukla, M., Cowland, J. B., Malemud, C. J. & Haqqi, T. M. Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis Rheum.56, 3326–3335 (2007). ArticleCASPubMed Google Scholar
Wilson, R., Belluoccio, D., Little, C. B., Fosang, A. J. & Bateman, J. F. Proteomic characterization of mouse cartilage degradation in vitro. Arthritis Rheum.58, 3120–3131 (2008). ArticleCASPubMed Google Scholar
Yamamoto, K. & Migita, S. Complete primary structures of two major murine serum amyloid A proteins deduced from cDNA sequences. Proc. Natl Acad. Sci. USA82, 2915–2919 (1985). ArticleCASPubMedPubMed Central Google Scholar
Lowell, C. A., Stearman, R. S. & Morrow, J. F. Transcriptional regulation of serum amyloid A gene expression. J. Biol. Chem.261, 8453–8461 (1986). CASPubMed Google Scholar
de Beer, M. C., Beach, C. M., Shedlofsky, S. I. & de Beer, F. C. Identification of a novel serum amyloid A protein in BALB/c mice. Biochem. J.280, 45–49 (1991). ArticleCASPubMedPubMed Central Google Scholar
Kluve-Beckerman, B., Drumm, M. L. & Benson, M. D. Nonexpression of the human serum amyloid A three (SAA3) gene. DNA Cell Biol.10, 651–661 (1991). ArticleCASPubMed Google Scholar
Kluve-Beckerman, B. & Song, M. Genes encoding human serum amyloid A proteins SAA1 and SAA2 are located 18 kb apart in opposite transcriptional orientations. Gene159, 289–290 (1995). ArticleCASPubMed Google Scholar
Reigstad, C. S., Lunden, G. O., Felin, J. & Backhed, F. Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. PLoS One4, e5842 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fasshauer, M. et al. Serum amyloid A3 expression is stimulated by dexamethasone and interleukin-6 in 3T3-L1 adipocytes. J. Endocrinol.183, 561–567 (2004). ArticleCASPubMed Google Scholar
Lin, Y. et al. Hyperglycemia-induced production of acute phase reactants in adipose tissue. J. Biol. Chem.276, 42077–42083 (2001). ArticleCASPubMed Google Scholar
Pickup, J. C., Mattock, M. B., Chusney, G. D. & Burt, D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia40, 1286–1292 (1997). ArticleCASPubMed Google Scholar
Han, C. Y. et al. Adipocyte-derived serum amyloid A3 and hyaluronan play a role in monocyte recruitment and adhesion. Diabetes56, 2260–2273 (2007). ArticleCASPubMed Google Scholar
Sommer, G. et al. The adipokine SAA3 is induced by interleukin-1β in mouse adipocytes. J. Cell. Biochem.104, 2241–2247 (2008). ArticleCASPubMed Google Scholar
Vallon, R. et al. Serum amyloid A (apoSAA) expression is up-regulated in rheumatoid arthritis and induces transcription of matrix metalloproteinases. J. Immunol.166, 2801–2807 (2001). ArticleCASPubMed Google Scholar
Conde, J. et al. Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Ann. Rheum. Dis.70, 551–559 (2011). ArticleCASPubMed Google Scholar
Maheshwari, A. et al. Epithelial cells in fetal intestine produce chemerin to recruit macrophages. Am. J. Physiol. Gastrointest. Liver Physiol.297, G1–G10 (2009). ArticleCASPubMedPubMed Central Google Scholar
Catalan, V. et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J. Mol. Med.87, 803–813 (2009). ArticleCASPubMed Google Scholar
Klöting, N. et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem. Biophys. Res. Commun.339, 430–436 (2006). ArticleCASPubMed Google Scholar
Hida, K. et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl Acad. Sci. USA102, 10610–10615 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ozgen, M. et al. Serum adiponectin and vaspin levels in rheumatoid arthritis. Arch. Med. Res.41, 457–463 (2010). ArticleCASPubMed Google Scholar
Senolt, L. et al. Vaspin and omentin: new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann. Rheum. Dis.69, 1410–1411 (2010). ArticlePubMed Google Scholar
Yang, R. Z. et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab.290, E1253–E1261 (2006). ArticleCASPubMed Google Scholar
Schäffler, A. et al. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim. Biophys. Acta1732, 96–102 (2005). ArticleCASPubMed Google Scholar