A measure of helical propensity for amino acids in membrane environments (original) (raw)

References

  1. Blaber, M., Zhang, X.-J. & Matthews, B.W. Structural basis of amino acid α-helix propensity. Science 260, 1637–1643 (1993).
    Article CAS Google Scholar
  2. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T.M. & Baldwin, R.L. Relative helix-forming tendencies of nonpolar amino acids. Nature 344, 268–270 (1990).
    Article CAS Google Scholar
  3. Lyu, P.C., Liff, M.I., Marky, L.A. & Kallenbach, N.R. Side chain contributions to the stability of α-helical structure in peptides. Science 250, 669–673 (1990).
    Article CAS Google Scholar
  4. O'Neil, K.T. & DeGrado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).
    Article CAS Google Scholar
  5. Chou, P.Y. & Fasman, G.D. Empirical predictions of protein conformation. A. Rev. Biochem. 47, 251–276 (1978).
    Article CAS Google Scholar
  6. Kopito, R.R. & Lodish, H.F. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316, 234–238 (1985).
    Article CAS Google Scholar
  7. Popot, J.-L. & de Vitry, C. On the microassembly of integral membrane proteins. A. Rev. Biophys. biophys. Chem. 19, 369–403 (1990).
    Article CAS Google Scholar
  8. Jennings, M.L. Topography of membrane proteins. A. Rev. Biochem. 58, 999–1027 (1989).
    Article CAS Google Scholar
  9. Deber, C.M., Brandl, C.J., Deber, R.B., Hsu, L.C. & Young, X.K. Amino acid composition of the membrane and aqueous domains of integral membrane proteins. Arch. Biochem. Biophys. 251, 68–76 (1986).
    Article CAS Google Scholar
  10. Landolt-Marticorena, C., Williams, K.A., Deber, C.M. & Reithmeier, R.A.F. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J. molec. Biol. 229, 602–608 (1993).
    Article CAS Google Scholar
  11. Li, S.-C. & Deber, C.M. Influence of glycine residues on peptide conformation in membrane environments. Int. J. peptide protein Res. 40, 243–248 (1992).
    Article CAS Google Scholar
  12. Wallace, B.A., Cascio, M. & Mielke, D.L. Evaluation of methods for the prediction of membrane protein secondary structures. Proc. natn. Acad. Sci. U.S.A. 83, 9423–9427 (1986).
    Article CAS Google Scholar
  13. Li, S.-C. & Deber, C.M. Peptide environment specifies conformation. Helicity of hydrophobic segments compared in aqueous, organic, and membrane environments. J. biol. Chem. 268, 22975–22978 (1993).
    CAS PubMed Google Scholar
  14. Li, S.-C. & Deber, C.M. Glycine and β-branched residues support and modulate peptide helicity in membrane environments. FEBS Lett. 311, 217–220 (1992).
    Article CAS Google Scholar
  15. Gasset, M. et al. Predicted α-helical regions of the prion protein when synthesized as peptides form amyloid. Proc. natn. Acad. Sci. U.S.A. 89, 10940–10944 (1992).
    Article CAS Google Scholar
  16. van de Ven, F.J.M. et al. Assignment of 1H, 15N, and backbone 13C resonances in detergent-solubilized M13 coat protein via multinuclear multidimensional NMR: a model for the coat protein monomer. Biochemistry 32, 8322–8328 (1993).
    Article CAS Google Scholar
  17. Hoyt, D.W. & Gierasch, L.M. Hydrophobic content and lipid interactions of wild-type and mutant OmpA signal peptides correlate with their in vivo function. Biochemistry 30, 10155–10163 (1991).
    Article CAS Google Scholar
  18. Gordon, L.M., Curtain, C.C., Zhong, Y.C., Kirkpatrick, A., Mobley, P.W. & Waring, A.J. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation. Biochim. biophys. Acta 1139, 257–274 (1992).
    Article CAS Google Scholar
  19. Roth, M., Lewit-Bentley, A., Michel, H., Deisenhofer, J., Huber, R. & Oesterhelt, D. Detergent structure in crystals of a bacterial photosynthetic reaction centre. Nature 340, 659–662 (1989).
    Article CAS Google Scholar
  20. Barber, J. Detergent ringing true as a model for membranes. Nature 340, 601 (1989).
    Article CAS Google Scholar
  21. Yang, J.T., Wu, C.-S.C. & Martinez, H.M. Calculation of protein conformation from circular dichroism. Meth. Enzymol. 130, 208–269 (1986).
    Article CAS Google Scholar
  22. Park, K., Perczel, A. & Fasman, G.D. Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins. Prot. Sci. 1, 1032–1049 (1992).
    Article CAS Google Scholar
  23. Heinz, D.W., Baase, W.A. & Matthews, B.W. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc. natn. Acad. Sci. U.S.A. 89, 3751–3755 (1992).
    Article CAS Google Scholar
  24. Zhong, L. & Johnson, C., Jr. Environment affects amino acid preference for secondary structure. Proc. natn. Acad. Sci. U.S.A. 89, 4462–4465 (1992).
    Article CAS Google Scholar
  25. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. molec. Biol. 157, 105–132 (1982).
    Article CAS Google Scholar
  26. Blaber, M., Zhang, X.-J. & Matthews, B.W. Alpha helix propensity of amino acids. Science 262, 917–918 (1993).
    Article Google Scholar
  27. Shortle, D. & Clarke, N. Alpha helix propensity of amino acids. Science 262, 917 (1993).
    Article Google Scholar
  28. Engelman, D.E., Steitz, T.A. & Goldman, A. Identifying nonpolar transmembrane helices in amino acid sequences of membrane proteins. A. Rev. Biophys. biophys. Chem. 15, 321–353 (1986).
    Article CAS Google Scholar
  29. Alber, T. Stabilization energies of protein conformation. In Prediction of Protein Structure and the Principles of Protein Conformation (ed. Fasman, G. D.), 161–192 Plenum (1989).
    Chapter Google Scholar
  30. Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).
    Article CAS Google Scholar
  31. Wattenberger, M.R., Chan, H.S., Evans, D.F., Bloomfield, V.A. & Dill, K.A. Surface-induced enhancement of internal structure in polymers and proteins. J. chem. Phys. 93, 8343–8351 (1990).
    Article Google Scholar
  32. Chan, H.S., Wattenberger, M.R., Evans, D.F., Bloomfield, V.A. & Dill, K.A. Enhanced structure in polymers at interfaces. J. chem. Phys. 94, 8542–8557 (1991).
    Article CAS Google Scholar
  33. Jacobs, R.E. & White, S.H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28, 3421–3437 (1989).
    Article CAS Google Scholar
  34. Engelman, D.M. & Steitz, T.A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411–422 (1981).
    Article CAS Google Scholar
  35. Kaiser, E.T. & Kezdy, F.J. Secondary structures of proteins and peptides in amphiphilic environments (A review). Proc. natn. Acad. Sci. U.S.A. 80, 1137–1143 (1983).
    Article CAS Google Scholar
  36. Wiener, M. C. & White, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61, 434–447 (1992).
    Article CAS Google Scholar
  37. White, S.H. & Wimley, W.C. Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding. Curr. Opin. struct. Biol. 4, 79–86 (1994).
    Article CAS Google Scholar
  38. Atherton, E. & Sheppard, R.C. in Solid Phase Peptide Synthesis, A Practical Approach (eds. Rickwood, D. & Hames, B.D.), 131–148 (IRL Press, Oxford, U.K., 1990).
    Google Scholar

Download references