Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction (original) (raw)

References

  1. Parkinson, J.S. Signal transduction schemes of bacteria. Cell 73, 857–871 (1993).
    Article CAS Google Scholar
  2. Parkinson, J.S. & Kofoid, E.C. Communication modules in bacterial signalling proteins. Annu. Rev. Genet. 26, 71–112 (1992).
    Article CAS Google Scholar
  3. Heyduck, T. & Lee, J.C. Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc. natn. Acad. Sci. U.S.A. 87, 1744–1748 (1990).
    Article Google Scholar
  4. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).
    Article CAS Google Scholar
  5. Somers, W.S. & Philips, S.E.V. 1992. Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 539, 387–393 (1992).
    Article Google Scholar
  6. Arvidson, D.N. Interaction of the Escherichia coli Trp aporepressor with its ligand, L-tryptophan. J. Biol. Chem. 261, 238–243 (1986).
    CAS PubMed Google Scholar
  7. Zhang, H. et al. The solution structure of the trp repressor-operator DNA complex. J. molec. Biol. 238, 592–614 (1994).
    Article CAS Google Scholar
  8. Miller, J.H. & Reznikoff, W.S. The operon, (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1980).
    Google Scholar
  9. Hillen, W., Gatz, C., Altschmied, L., Schollmeier, K. & Meier, I. Control of expression of the Tn_10_-encoded tetracyline resistance genes. J. molec. Biol. 169, 707–721 (1983).
    Article CAS Google Scholar
  10. Takahashi, M., Altschmied, L. & Hillen, W. Kinetic and equilibrium characterization of the Tet repressor-tetracyline complex by fluorescence measurements. J. molec. Biol. 187, 341–348 (1986).
    Article CAS Google Scholar
  11. Laiken, S.L., Gross, C.A. & von Hippel, P.H. Equilibrium and kinetic studies of Escherichia coli lac repressor-inducer interactions. J. molec. Biol. 66, 143–155 (1972).
    Article CAS Google Scholar
  12. Lin, S.-Y. & Riggs, A.D. The general affinty of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell 4, 107–111 (1975).
    Article CAS Google Scholar
  13. Hansen, D., Altschmied, L., & Hillen, W. Tet repressor mutants with single tyrptophan residues as fluorescent probes. J. Biol. Chem. 262, 14030–14035 (1987).
    CAS PubMed Google Scholar
  14. Weber, I.T. & Steitz, T.A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. molec. Biol. 198, 311–326 (1987).
    Article CAS Google Scholar
  15. Rafferty, J.B., Somers, W.S., Saint-Girons, J. & Phillips, S.E.V. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341, 705–710 (1989).
    Article CAS Google Scholar
  16. Chabbert, M., Hillen, W., Hansen, D., Takahashi, M. & Bousquet, J. Structural analysis of the operator binding domain of Tn_10_-encoded Tet repressor: a time-resolved fluorescence and anisotropy study. Biochemistry 31, 1951–1960 (1992).
    Article CAS Google Scholar
  17. Zhao, D., Arrowsmith, C.H., Jia, X. & Jardetzky, O. Refined solution structure of the Escherichia coli trp holo-and aporepressor. J. molec. Biol. 229, 735–746 (1993).
    Article CAS Google Scholar
  18. Zhang, R.-G., Joachimiak, A., Lawson, C.L., Schevitz, R.W., Otwinowski, Z. & Sigler, P.B. The crystal structure of trp aporepressor at 1.8 Å shows how binding tryptophan enhances DNA affinity. Nature 327, 591–597 (1987).
    Article CAS Google Scholar
  19. Hinrichs, W., Kisker, C., Düvel, M., Müller, A., Tovar, K., Hillen, W. & Saenger, W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418–420 (1994).
    Article CAS Google Scholar
  20. Kisker, C., Hinrichs, W., Tovar, K., Hillen, W. & Saenger, W. The complex formed between tetracycline repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. molec. Biol. 247, 260–280 (1995).
    Article CAS Google Scholar
  21. Wissmann, A., Meier, I. & Hillen, W. Saturation mutagenesis of the Tn_10_-encoded fef operator O1: identification of base-pairs involved in Tet repressor recognition. J. molec. Biol. 202, 397–406 (1988).
    Article CAS Google Scholar
  22. Heuer, C. & Hillen, W. Tet repressor-tet operator contacts probed by operator DNA-modification interference studies. J. molec. Biol. 202, 407–415 (1988).
    Article CAS Google Scholar
  23. Sizemore, C., Wissmann, A., Gülland, U. & Hillen, W. Quantitative analysis of Tn_10_ Tet repressor binding to a complete set of tet operator mutants. Nucleic Acids Res. 18, 2875–2880 (1990).
    Article CAS Google Scholar
  24. Tovar, K. & Hillen, W. Tet repressor binding induced curvature of tet operator DNA. Nucleic Acids Res. 17, 6515–6522 (1989).
    Article CAS Google Scholar
  25. Wissmann, A. et al. Amino acids determining operator binding specificity in the helix-turn-helix motif of Tn_10_ Tet repressor. EMBO J. 10, 4145–4152 (1991).
    Article CAS Google Scholar
  26. Baumeister, R., Helbl, V. & Hillen, W. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants. J. molec. Biol. 226, 1257–1270 (1992).
    Article CAS Google Scholar
  27. Helbl, V., Berens, C., & Hillen, W. Proximity probing of Tet repressor to tet operator by dimethylsulfate reveals protected and accessible functions for each recognized base-pair in the major groove. J. molec. Biol. 245, 538–548 (1995).
    Article CAS Google Scholar
  28. Smith, L.D. & Bertrand, K.P. Mutations in the Tn_10_ Tet repressor that interfere with induction; location of the tetracycline-binding domain. J. molec. Biol. 203, 949–959 (1988).
    Article CAS Google Scholar
  29. Hecht, B., Müller, G. & Hillen, W. Non-Inducible Tet Represssor Mutations Map from the Operator Binding Motif to the C-Terminus. J. Bacteriol. 175, 1206–1210 (1993).
    Article CAS Google Scholar
  30. Goldenberg, D.P. Genetic studies of protein stability and mechanisms of folding. A. Rev. Biophys. biophys. Chem. 17, 481–507 (1988).
    Article CAS Google Scholar
  31. Wissmann, A. et al. Selection for Tn_10_ Tet repressor binding to fet operator in Escherichia coli: isolation of temperature-sensitive mutants and combinatorial mutagenesis in the DNA binding motif. Genetics 128, 225–232 (1991).
    CAS PubMed PubMed Central Google Scholar
  32. Markiewicz, P., Kleina, L., Cruz, C., Ehret, S. & Miller, J.H. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as ‘Spacers’ which do not require a specific sequence. J. molec. Biol. 240, 421–433 (1994).
    Article CAS Google Scholar
  33. Ramakrishnan, C. & Srinivasan, N. Glycyl residue in proteins and peptides: An analysis. Curr. Sci. 59, 851–861 (1990).
    CAS Google Scholar
  34. Richmond, T. & Richards, F. Packing of α-helices: geometrical constraints and contact areas. J. molec. Biol. 119, 537–555 (1978).
    Article CAS Google Scholar
  35. Jobe, A., Riggs, A.D. & Bourgeois, S. lac Repressor-operator interactions: V. characterisation of super- and pseudo-wild-type repressors. J. molec. Biol. 64, 181–199 (1972).
    Article CAS Google Scholar
  36. Kleina, L.G. & Miller, J.H. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J. molec. Biol. 121, 2956–318 (1990).
    Google Scholar
  37. Arvidson, D.N., Pfau, J., Hatt, J.K., Shapiro, M., Pecoraro, F.S. & Youderian, P. Super-repressors with alanine 77 changes. J. Biol. Chem. 268, 4362–4369 (1993).
    CAS PubMed Google Scholar
  38. Hurlburt, B.K. & Yanofsky, C. Enhanced operator binding by trp superrepressors of Escherichia coli. J. Biol. Chem. 265, 7853–7858 (1990).
    CAS PubMed Google Scholar
  39. Degenkolb, J., Takahashi, M., Ellestad, G.A., & Hillen, W. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with Tet repressor. Antimicrob. Agents Chemother. 35, 1591–1595 (1991).
    Article CAS Google Scholar
  40. Takahashi, M., Degenkolb, J. & Hillen, W. Determination of the equilibrium association constant between Tet repressor and tetracycline at limiting Mg2+ concentrations: a generally applicable method for effector-dependent high affinity complexes. Analyt. Biochem. 199, 197–202 (1991).
    Article CAS Google Scholar
  41. Richardson, J.S. & Richardson, D.C. in Prediction of protein structure and the principles of protein conformation (Ed. G.D. Fasman) (Plenum Press, New York and London; 1989).
  42. Altschmied, L., & Hillen, W. Tet repressor tet operator complex formation induces conformational changes in the tet operator DNA. Nucleic Acids Res. 12, 2171–2180 (1984).
    Article CAS Google Scholar
  43. Lederer, H., Tovar, K., Baer, G., May, R.P., Hillen, W. & Heumann, H. The quaternary structure of Tet repressors bound to the Tn_10_-encoded tet gene control region determined by neutron solution scattering. EMBO J. 8, 1257–1263 (1989).
    Article CAS Google Scholar
  44. Barford, D. & Johnson, L.N. The allosteric transition of glycogen phosphorylase. Nature 340, 609–616 (1989).
    Article CAS Google Scholar
  45. Altschmied, L., Baumeister, R., Pfleiderer, K. & Hillen, W. A threonine to alanine exchange at position 40 of Tet repressor alteres the recognition of the sixth base pair of fef operator from GC to AT. EMBO J. 7, 4011–4017 (1988).
    Article CAS Google Scholar
  46. Ettner, N., Metzger, J.W., Lederer, T., Hulmes, J.D., Kisker, C., Hinrichs, W., Ellestad, G.A. & Hillen, W. Proximity mapping of the Tet repressor-tetracycline-Fe2+ complex by hydrogen peroxide mediated protein cleavage. Biochemistry 34, 22–31 (1995).
    Article CAS Google Scholar
  47. Brent, R. & Ptashne, M. Mechanism of action of the lexA gene product. Proc. natn. Acad. Sci. U.S.A. 78, 4204–4208 (1981).
    Article CAS Google Scholar
  48. Berens, C., Altschmied, L. & Hillen, W. The role of the N-terminus in Tet repressor for tet operator binding determined by a mutational analysis. J. Biol. Chem. 267, 1945–1952 (1992).
    CAS PubMed Google Scholar
  49. Ausubel, F.M. et al. Current protocols in molecular biology. Greene Publishing Associates, (J. Wiley and Sons, New York' 1989).
    Google Scholar
  50. Hansen, D. & Hillen, W. Tryptophan in α-helix 3 of Tet repressor forms a sequence-specific contact with tef operator in solution. J. Biol. Chem. 262, 12269–12274 (1987).
    CAS PubMed Google Scholar
  51. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 1903–1906 (1976).
    Article Google Scholar
  52. Perrin, D.D. & Dempsey, B. Buffers for pH and metal ion control. (Chapman and Hill Ltd., London; 1974).
    Google Scholar
  53. Hillen, W. & Berens, C. Mechanisms underlying expression of Tn_10_ encoded tetracycline resistance. A. Rev. Microbiol. 48, 345–369 (1994).
    Article CAS Google Scholar

Download references