2.1 Å resolution refined structure of a TATA box-binding protein (TBP) (original) (raw)
References
Sentenac, A. Eukaryotic RNA polymerases. CRC Crit. Rev. Biochem.18, 31–90 (1985). CASPubMed Google Scholar
Reeder, R.H. Regulation of transcription by RNA polymerase I. in Transcriptional regulation (eds McKnight, S. & Yamamoto, K.R.) 315–348 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992). Google Scholar
Roeder, R.G. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends biochem. Sci.16, 402–408 (1991). ArticleCASPubMed Google Scholar
Zawel, Z. & Reinberg, D. Initiation of transcription by RNA polymerase II: a multi-step process. Prog. nucl. Acids Res. molec. Biol.44, 67–108 (1993). CAS Google Scholar
Gabrielsen, O.S. & Sentenac, A. RNA polymerase III (C) and its transcription factors. Trends biochem. Sci.16, 412–416 (1991). CASPubMed Google Scholar
Hernandez, N. TBP, a universal transcription factor? Genes Dev.7, 1291–1308 (1993). CASPubMed Google Scholar
Gill, G. & Tjian, R. Eukaryotic coactivators associated with the TATA box binding protein. Curr. Opin. Genetics Dev.2, 236–242 (1992). CAS Google Scholar
Matsui, T., Segall, J., Weil, P.A. & Roeder, R.G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. biol. Chem255, 11992–11996 (1980). CASPubMed Google Scholar
Buratowski, S. & Sharp, P.A. Initiation of transcription by RNA polymerase II. in Transcriptional Regulation (eds McKnight, S. & Yamamoto, K.R.) 227–246 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992). Google Scholar
Buratowski, S., Hahn, S., Guarente, L. & Sharp, P.A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell56, 549–561 (1989). ArticleCASPubMed Google Scholar
Wang, W., Carey, M. & Gralla, J. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science255, 450–453 (1992). CASPubMed Google Scholar
Dyke, M.W.V., Roeder, R.G. & Sawadogo, M. Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. Science241, 1335–1338 (1988). PubMed Google Scholar
Ptashne, M. & Gann, A.A.F. Activators and targets. Nature346, 329–331 (1990). CASPubMed Google Scholar
Wang, W., Gralla, J. & Carey, M. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev.6, 1716–1727 (1992). CASPubMed Google Scholar
Comai, L., Tanese, N. & Tjian, R. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell68, 965–976 (1992). CASPubMed Google Scholar
Nikolov, D.B. et al. Crystal structure of TFIID TATA box-binding protein. Nature360, 40–46 (1992). ArticleCASPubMed Google Scholar
Hahn, S., Buratowski, S., Sharp, P.A. & Guarente, L. The TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc. natn. Acad. Sci. U.S.A.86, 5718–5722 (1989). CAS Google Scholar
Hooper, B.C., LeBlanc, J.F. & Hawley, D.K. Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J. biol. Chem.267, 11539–11546 (1992). Google Scholar
Chasman, D.I., Flaherty, K.M., Sharp, P.A. & Kornberg, R.D. Crystal structure of yeast TATA-binding protein and model for interaction with DNA. Proc. natn. Acad. Sci. U.S.A.90, 8174–8178 (1993). CAS Google Scholar
Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature356, 512–520 (1993). Google Scholar
Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature365, 520–527 (1993). ArticleCASPubMed Google Scholar
Kim, J.L. & Burley, S.K. 1.9 Å Refined structure of TBP recognizing the minor groove of TATAAAAG. Nature struct. Biol.1, 638–653 (1994). CASPubMed Google Scholar
Sibanda, B.L., Blundell, T.L. & Thornton, J.M. Conformation of β-hairpins in protein structures: A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J. molec. Biol.206, 759–777 (1989). ArticleCASPubMed Google Scholar
Janin, J. & Chothia, C. The structure of protein-protein recognition sites. J. biol. Chem.265, 16027–16030 (1990). CASPubMed Google Scholar
Hoffmann, A. et al. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature346, 387–390 (1990). CAS Google Scholar
Crowley, T.E. et al. A new factor related to TATA-binding protein has highly restricted expression patterns in Drosophila. Nature361, 557–561 (1993). CASPubMed Google Scholar
McAndrew, M.B., Read, M., Sims, P.F.G. & Hyde, J.E. Characterization of the gene encoding an unusually divergent TATA-binding protein (TBP) from the extremely A+T rich human malaria parasite Plasmodium falciparum. Gene124, 165–171 (1993). CASPubMed Google Scholar
Bowie, J.U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science253, 164–170 (1991). CASPubMed Google Scholar
Cormack, B.P. & Struhl, K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell69, 685–696 (1992). CASPubMed Google Scholar
Schultz, M.C., Reeder, R.H. & Hahn, S. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters. Cell69, 697–702 (1992). CASPubMed Google Scholar
Cormack, B.P. & Struhl, K. Regional codon randomization: defining a TATA-binding protein surface required for RNA polymerase III transcription. Science262, 244–248 (1993). CASPubMed Google Scholar
Kim, T.K. & Roeder, R.G. Involvement of the basic repeat domain of TATA-binding protein (TBP) in transcription by RNA polymerase I, II, and III. J. biol. Chem.269, 4891–4894 (1994). CASPubMed Google Scholar
Reddy, P. & Hahn, S. Dominant negative mutation in yeast TFIID define a bipartite DNA-binding region. Cell65, 349–357 (1991). CASPubMed Google Scholar
Poon, D. et al. Genetic and biochemical analyses of yeast TATA-binding protein mutants. J. biol. Chem.268, 5005–5013 (1993). CASPubMed Google Scholar
Buratowski, S. & Zhou, H. A suppressor of TBP mutations encodes an RNA polymerase II transcription factor with homology to TFIIB. Cell71, 221–230 (1992). CASPubMed Google Scholar
Colbert, T. & Hahn, S. A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev.6, 1940–1949 (1992). CASPubMed Google Scholar
Dahmus, M.E. & Kedinger, C. Transcription of Adenovirus-2 major late promoter inhibited by monoclonal antibody directed against RNA polymerase IIA and IIO. J. biol. Chem.258, 2303–2307 (1983). CASPubMed Google Scholar
Usheva, A. et al. Specific interactions between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell69, 871–881 (1992). CASPubMed Google Scholar
Lee, D.K., DeJong, J., Hashimoto, S., Horikoshi, M. & Roeder, R.G. TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Molec. Cell. Biol.12, 5189–5196 (1992). CASPubMedPubMed Central Google Scholar
Buratowski, S. & Zhou, H. Transcription factor IID mutants defective for interaction with transcription factor IIA. Science255, 1030–1032 (1992). Google Scholar
Ranish, J.A., Lane, W.S. & Hahn, S. Isolation of two genes that encode subunits of the yeast transcription factor IIA. Science255, 1127–1129 (1992). CASPubMed Google Scholar
Greenblatt, J. Protein-protein interactions as critical determinants of regulated initiation and termination of transcription. in Transcriptional Regulation (eds McKnight, S. & Yamamoto, K.R.) 203–226 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992). Google Scholar
Kim, T.K. et al. Effects of activation-defective TBP mutations on transcription inhibition in yeast. Nature, 369, 252–255 (1994). CASPubMed Google Scholar
Zhou, Q., Boyer, T.G. & Berk, A.J. Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev.7, 180–187 (1993). CASPubMed Google Scholar
Yokomori, K., Chen, J.-L., Admon, A., Zhou, S. & Tjian, R. Molecular cloning and characterization of dTAFII30α and dTAFII30β: two small subunits of Drosophila TFIID. Genes Dev.7, 2587–2597 (1993). CASPubMed Google Scholar
Kokubo, T., Gong, D.-W., Wootton, J.C., Horikoshi, M. & Roeder, R.G. Molecular cloning of Drosophila TFIID subunits. Nature367, 484–487 (1993). Google Scholar
Weinzierl, R., Ruppert, S., Dynlacht, B., Tanese, N. & Tjian, R. Cloning and expression of Drosophila TAFII60 and human TAFII70 reveal conserved interactions with other subunits of TFIID. EMBO J.12, 5303–5309 (1993). CASPubMedPubMed Central Google Scholar
Kokubo, T., Yamashita, S., Horikoshi, M., Roeder, R.G. & Nakatani, Y. Interaction between the N-terminal domain of the 230kDa subunit and the TATA box-binding subunit of TFIID negatively regulates TATA box binding. Proc. natn. Acad. Sci. U.S.A.91, 3520–3524 (1994). CAS Google Scholar
Lee, W.S., Kao, C.C., Bryant, G.O., Liu, X. & Berk, A.J. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell67, 365–376 (1991). CASPubMed Google Scholar
Winston, F. & Minehart, P.L. Analysis of the yeast SPT3 gene and identification of its product, a positive regulator of Ty transcription. Nucl. Acids Res.14, 6885–6900 (1986). CASPubMedPubMed Central Google Scholar
Winston, F. Analysis of SPT Genes: A genetic approach toward analysis of TFIID, histones, and other transcription factors of yeast. in Transcriptional Regulation (eds McKnight, S. & Yamamoto, K.R.) 1271–1293 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992). Google Scholar
Eisenmann, D.M., Arndt, K.M., Ricupero, S.L., Rooney, J.W. & Winston, F. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev.6, 1319–1331 (1992). CASPubMed Google Scholar
Workman, J.L. & Roeder, R.G. Binding of transcription factor TFIID to the major late promoter during In vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell51, 613–622 (1987). CASPubMed Google Scholar
Felsenfeld, G. Chromatin as an essential part of the transcriptional mechanism. Nature355, 219–224 (1992). CASPubMed Google Scholar
Meisterernst, M. & Roeder, R.G. Family of proteins that interact with TFIID and regulate promoter activity. Cell67, 557–567 (1991). CASPubMed Google Scholar
Inostroza, J.A., Mermelstein, F.H., Ha, I., Lane, W.S. & Reinberg, D. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell70, 477–489 (1992). CASPubMed Google Scholar
Meisterernst, M., Roy, A.L., Lieu, H.M. & Roeder, R.G. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell66, 981–993 (1991). CASPubMed Google Scholar
Cortes, P., Flores, O. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Molec. Cell. Biol.12, 413–421 (1992). CASPubMedPubMed Central Google Scholar
Drapkin, R., Merino, A. & Reinberg, D. Regulation of RNA polymerase II transcription. Curr. Opin. Cell Biol.5, 469–476 (1993). CASPubMed Google Scholar
Kelleher, III, R.J. et al. Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev.6, 296–303 (1992). CASPubMed Google Scholar
Berk, A.J. Adenovirus E1A trans-activation: Understanding it Will Require learning how the general transcription factors function. in Transcriptional Regulation (eds McKnight, S. & Yamamoto, K.R.) 727–742 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992). Google Scholar
Horikoshi, N., et al. Direct interactions between Adenovirus E1A protein and the TATA box binding transcription factor IID. Proc. natn. Acad. Sci. U.S.A.88, 5124–5128 (1991). CAS Google Scholar
Kerr, L.D. et al. Association between proto-oncoprotein rel and TATA-binding protein mediates transcriptional activation by NF-kB. Nature356, 412–419 (1993). Google Scholar
Keaveney, M., Berkenstam, A., Feigenbutz, M., Vriend, G. & Stunnenberg, H.G. Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature365, 562–566 (1993). CASPubMed Google Scholar
Caron, C. et al. Functional and biochemical interaction of the THLV-1 TAX1 transcactivatorwith TBP. EMBO J.12, 4269–4278 (1993). CASPubMedPubMed Central Google Scholar
Hagemeier, C., Walker, S., Caswell, R., Kouzarides, T. & Sinclair, J. The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transcactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J. Virol.66, 4452–4456 (1992). CASPubMedPubMed Central Google Scholar
Lieberman, P.M. & Berk, A.J. The Zta trans-activator protein stabilizes TFIID association with promoter DMA by direct protein-protein interaction. Genes Dev.5, 2441–2454 (1991). CASPubMed Google Scholar
Stringer, K.F., Ingles, C.J. & Greenblatt, J. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature345, 783–786 (1990). CASPubMed Google Scholar
Martin, D.W., Munoz, R.M., Subler, M.A. & Deb, S. p53 binds to the TATA-binding protein-TATA complex. J. biol. Chem.268, 13062–13067 (1993). CASPubMed Google Scholar
Seto, E. et al. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. natn. Acad. Sci. U.S.A.89, 12028–12032 (1992). CAS Google Scholar
Truant, R., Xiao, H., Ingles, C.J. & Greenblatt, J. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. biol. Chem.268, 2284–2287 (1993). CASPubMed Google Scholar
Ragimov, N. et al. Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene8, 1183–1193 (1993). CASPubMed Google Scholar
Liu, X., Miller, C.W., Koeffler, P.H. & Berk, A.J. p53 activation domain binds TATA-box-binding polypeptide and a neighboring p53 domain inhibits transcription. Molec. Cell. Biol.13, 3291–3300 (1993). CASPubMedPubMed Central Google Scholar
Chen, X., Farmer, G., Zhu, H., Praywes, R. & Prives, C. Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev.7, 1837–1849 (1993). CASPubMed Google Scholar
Katagiri, F. & Chua, N.-H. Plant transcription factors: present knowledge and future challenges. Trends Genet.8, 22–27 (1992). CASPubMed Google Scholar
Brunger, A.T. XPLOR Manual (Yale University, New Haven, 1992). Google Scholar
Luzzati, P.V. Traitement statistique des erreurs dans la determination des structures cristallines. Acta. crystallogr.5, 802–810 (1952). Google Scholar
Ramachandran, G.N. & Sasisekharan, V. Conformation of polypeptides and proteins. Advan. Prot. Chem.23, 283–437 (1968). CAS Google Scholar
Luthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature356, 83–85 (1992). CASPubMed Google Scholar
Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946–950 (1991). Google Scholar
Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). CASPubMed Google Scholar
Gilson, M., Sharp, K. & Honig, B. Calculating the electrostatic potential of molecules in solution: method and error assessment. J. comput. Chem.9, 327–335 (1988). CAS Google Scholar
Kim, S.S., Hong, Y. & Kang, C. Effects of multiple mutations at the conserved TATA sequence of bacteriophage SP6 promoter on transcription efficiency. Biochem. molec. Biol. Internatl.31, 153–159 (1993). CAS Google Scholar
Xu, X. et al. Functional interaction of the v-rel and c-rel oncoproteins with the TATA-binding protein and association with TFIIB. Molec. Cell. Biol.13, 6733–6741 (1993). CASPubMedPubMed Central Google Scholar
Gasch, A., Hoffmann, A., Horikoshi, M., Roeder, R.G. & Chua, N.-H. Arabidopsis thaliana contains two genes for TFIID. Nature346, 390–394 (1990). CASPubMed Google Scholar
Haass, M.M. & Feix, G. Two different cDNA encoding TFIID proteins of maize. FEBS Lett.301, 294–298 (1992). CASPubMed Google Scholar
Holdsworth, M.J., Grierson, C., Schuch, W. & Bevan, M. DNA-binding properties of cloned TATA-binding protein from potato tubers. Plant molec. Biol.19, 455–464 (1992). CAS Google Scholar
Kawata, T., Minami, M., Tamura, T.-a., Sumita, K. & Iwabuchi, M. Isolation and characterization of a cDNA clone encoding the TATA•box-binding protein (TFIID) from wheat. Plant molec. Biol.19, 867–872 (1992). CAS Google Scholar
Apsit, V., Freeberg, J.A., Chase, M.R., Davis, E.A. & Ackerman, S. Wheat TFIID TATA binding protein. Nucl. Acids Res.21, 1494 (1993). CASPubMedPubMed Central Google Scholar
Fikes, J.D., Becker, D.M., Winston, F. & Guarente, L. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature346, 291–294 (1990). CASPubMed Google Scholar
Hoffmann, A. et al. Cloning of the Schizosaccharomyces pombe TFIID gene reveals a strong conservation of functional domains present in Saccharomyces cerevisiae TFIID. Genes Dev.4, 1141–1148 (1990). CASPubMed Google Scholar
Horikoshi, M. et al. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature341, 299–303 (1989). CASPubMed Google Scholar
Cavallini, B. et al. Cloning of the gene encoding the yeast protein BTF1Y, which can substitute for the human TATA box-binding factor. Proc. natn. Acad. Sci. U.S.A.86, 9803–9807 (1989). CAS Google Scholar
Hahn, S., Buratowski, S., Sharp, P.A. & Guarente, L. Isolation of the gene encoding the yeast TATA binding protein TFIID: A gene identical to the SPT15 suppressor of Ty element insertions. Cell58, 1173–1181 (1989). CASPubMed Google Scholar
Schmidt, M.C., Kao, C.C., Pei, R. & Berk, A.J. Yeast TATA-box transcription factor gene. Proc. natn. Acad. Sci. U.S.A.86, 7785–7789 (1989). CAS Google Scholar
Hoey, T., Dynlacht, B.D., Peterson, M.G., Pugh, B.F. & Tjian, R. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell61, 1179–1186 (1990). CASPubMed Google Scholar
Muhich, M.L., Iida, C.T., Horikoshi, M., Roeder, R.G. & Parker, C.S. cDNA clone encoding Drosophila transcription factor TFIID. Proc. natn. Acad. Sci. U.S.A.87, 9148–9152 (1990). CAS Google Scholar
Kao, C.C. et al. Cloning of a transcriptionally active human TATA binding factor. Science248, 1646–1650 (1990). CASPubMed Google Scholar
Peterson, M.G., Tanese, N., Pugh, B.F. & Tjian, R. Functional domains and upstream activation properties of cloned human TATA binding protein. Science248, 1625–1630 (1990). CASPubMed Google Scholar
Wong, J., Liu, F. & Bateman, E. Cloning and expression of the Acanthamoeba castellanii gene encoding transcription factor TFIID. Gene117, 91–97 (1992). CASPubMed Google Scholar
Li, S. & Donelson, J.E. The gene for the TATA box-binding protein of Onchocerca volvulus. Molec. Biochem. Parasitol.61, 321–324 (1993). CAS Google Scholar
Lichtsteiner, S. & Tjian, R. Cloning and properties of the Caenorhabditis elegans TATA-box binding protein. Proc. natn. Acad. Sci. U.S.A.90, 9673–9677 (1993). CAS Google Scholar
Stargell, L.A. & Gorovsky, M.A. TATA-binding protein and nuclear differentiation in Tetrahymena thermophila. Molec. cell. Biol.14, 723–734 (1994). CASPubMedPubMed Central Google Scholar