Calcium-induced structural changes and domain autonomy in calmodulin (original) (raw)

References

  1. Klee, C.B. in Molecular Aspects of Cellular Regulation (eds. Cohen, P. & Klee, C.B.) 35–56 (Elsevier, New York; 1988).
    Google Scholar
  2. Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. biophys. biomol. Struct. 24 85–116 (1995).
    Article CAS PubMed Google Scholar
  3. Kawasaki, H. & Kretsinger, R.H., Calcium-Binding Proteins 1: EF-hands. Protein Profile 1 343–346 (1994).
    CAS PubMed Google Scholar
  4. Walsh, M., Stevens, F.C., Kuznicki, J. & Drabikowski, W. Characterization of tryptic fragments obtained from bovine brain protein modulator of cyclic nucleotide phosphodiesterase. J. biol. Chem. 252 7440–7443 (1977).
    Article CAS PubMed Google Scholar
  5. Drabikowski, W., Kuznicki, J. & Grabarek, Z. Similarity in Ca2+-induced changes between troponin-C and protein activator of 3′:5′-cyclic nucleotide phosphodiesterase and their tryptic fragments Biochim. biophys. Acta 485 124–133 (1977).
    Article CAS PubMed Google Scholar
  6. Babu, Y.S., Bugg, C.E. & Cook, W.J. Three-dimensional structure of calmodulin refined at 2. 2 Å resolution. J. molec. Biol. 204, 191–204 (1988).
    Article CAS PubMed Google Scholar
  7. Chattopadhyaya, R., Meador, W.E., Means, A.R. & Quiocho, F.A. Calmodulin structure refined at 1.7 A resolution J. molec. Biol. 228, 1177–92 (1992).
    Article CAS PubMed Google Scholar
  8. Taylor, D.A., Sack, J.S., Maune, J.F., Beckingham, K. & Quiocho, F.A. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2- Å resolution J. biol. Chem. 266, 21375–80 (1991).
    Article CAS PubMed Google Scholar
  9. Rao, S.T. et al. Structure of Paramecium tetraurelia calmodulin at 1.8 Å resolution Protein Sci. 2, 436–47 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  10. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible Biochemistry 31, 5269–78 (1992).
    Article CAS PubMed Google Scholar
  11. Heidorn, D.B. & Trewhella, J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27, 909–915 (1988).
    Article CAS PubMed Google Scholar
  12. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex Science 257, 1251–5 (1992).
    Article CAS PubMed Google Scholar
  13. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721 (1993).
    Article CAS PubMed Google Scholar
  14. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR Science 256, 632–8 (1992).
    Article CAS PubMed Google Scholar
  15. Clore, G.M., Bax, A., Ikura, I. & Gronenborn, A.M. Structure of calmodulin-target peptide complexes Curr. Opin. struct. Biol. 3, 838–845 (1993).
    Article CAS Google Scholar
  16. Finn, B.E. & Forsén, S. The evolving model of calmodulin structure, function and activation. Structure 3, 7–11 (1995).
    Article CAS PubMed Google Scholar
  17. Herzberg, O. & James, M.N.G. Structure of the calcium regulatory muscle protein troponin C at 2.8 Å resolution Nature 313, 653–659 (1985).
    Article CAS PubMed Google Scholar
  18. Herzberg, O. & James, M.N.G. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å. J. molec. Biol. 203, 761–779 (1988).
    Article CAS PubMed Google Scholar
  19. LaPorte, D.C., Wierman, B.M. & Storm, D.R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19, 3814–3819 (1980).
    Article CAS PubMed Google Scholar
  20. Seaton, B.A., Head, J.F. & Richards, F.M. Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering Biochemistry 24, 6740–6743 (1985).
    Article CAS PubMed Google Scholar
  21. Strynadka, N.C.J. & James, M.N.G. Two trifluoroperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin C. Proteins Struct. Func. Genet. 3, 1–17 (1988).
    Article CAS Google Scholar
  22. Finn, B.E., Drakenberg, T. & Forsén, S. The structure of apocalmodulin: A1H NMR examination of the carboxy-terminal domain. FEBS Lett. 336, 368–374 (1993).
    Article CAS PubMed Google Scholar
  23. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures J appl. Crystallogr. 26, 283–291 (1993).
    Article CAS Google Scholar
  24. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).
    Article CAS PubMed Google Scholar
  25. Pedigo, S. & Shea, M.A. Quantitative endoprotease GluC footprinting of cooperative Ca2+ binding to calmodulin: Susceptibility of E31 and E87 indicates interdomain interactions. Biochemistry 34, 1179–1196 (1995).
    Article CAS PubMed Google Scholar
  26. Hennessey, J.P.J., et al. Conformational transitions of calmodulin as studied by vacuum-UV CD Biopolymers 26, 561–571 (1987).
    Article CAS PubMed Google Scholar
  27. Linse, S., Helmersson, A. & Forsén, S. Calcium binding to calmodulin and its globular domains J. biol. Chem. 266, 8050–4 (1991).
    Article CAS PubMed Google Scholar
  28. Manning, M.C. Underlying assumptions in the estimation of secondary structure in proteins by circular dichroism spectroscopy - A critical review. J. Pharm. biomed. Analysis 7, 1103–1119 (1989).
    Article CAS Google Scholar
  29. Gagné, S.M., et al. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C Prot. Sci. 3, 1961–1974 (1994).
    Article Google Scholar
  30. Urbauer, J.L., Short, J.H., Dow, L.K. & Wand, J.A. Structural analysis of a novel interaction by calmodulin: High-affinity binding of a peptide in the absence of calcium. Biochemsitry 34, 8099–8109 (1995).
    Article CAS Google Scholar
  31. Brodin, P., et al. Expression of bovine intestinal calcium binding protein from a synthetic gene in Escherichia coli and characterization of the product. Biochemistry 25, 5371–5377 (1986).
    Article CAS PubMed Google Scholar
  32. Macura, S. & Ernst, R.R. Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy Mol. Phys. 41, 95–117 (1980).
    Article CAS Google Scholar
  33. Bax, A. A spatially selective composite 90 degree radiofrequency pulse. J. magn. Reson. 65, 142–145 (1985).
    Google Scholar
  34. Aue, W.P., Batholdi, E. & Ernst, R.R. Two-dimensional spectroscopy: Application to nuclear magnetic resonance. J. chem. Phys. 64, 2229–2246 (1976).
    Article CAS Google Scholar
  35. Mueller, L.P.E. COSY, a simple alternative to E-COSY J. magn. Reson. 72, 191–196 (1987).
    CAS Google Scholar
  36. Braunschweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. magn. Reson. 53, 521–528 (1983).
    CAS Google Scholar
  37. Bax, A. & Davis, D.G. MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 65, 355–360 (1985).
    CAS Google Scholar
  38. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & A., B. Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. chem. Soc. 111, 1515 (1989).
    Article CAS Google Scholar
  39. Koning, T.M.G., Boelens, R. & Kaptein, R. Calculation of the nuclear Overhauser effect and the determination of proton-proton distances in the presence of internal motions J. magn. Reson. 90, 111–123 (1990).
    CAS Google Scholar
  40. Tropp, J. Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect of fluctuating internuclear distances J. chem. Phys. 72, 6035–6043 (1980).
    Article CAS Google Scholar
  41. Montelione, G.T., Winkler, M.E., Rauenbuehler, P. & Wagner, G. Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins J. magn. Reson. 82, 198–204 (1989).
    CAS Google Scholar
  42. Brünger, A.T. X-PLOR Version 3.7 (Yale University, New Haven; 1992).
    Google Scholar
  43. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance-dynamical simulated annealing calculations FEBS Lett. 229, 317–324 (1988).
    Article CAS PubMed Google Scholar
  44. Nilges, M.A. A calculational strategy for the structure determination of symmetric dimers by 1H NMR. Proteins Struct. Funct. Genet. 17, 295–309 (1993).
    Article Google Scholar
  45. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system J. molec. Graphics 6, 13–27 (1988).
    Article CAS Google Scholar

Download references