Glenner, G.G. Amyloid deposits and amyloidosis: The β-fibrilloses (first of two parts). New. Engl. J. Med.302, 1283–1292 (1980). ArticleCAS Google Scholar
Glenner, G.G. Amyloid deposits and amyloidosis: The β-Fibrilloses (second of two parts). New. Engl. J. Med.302, 1333–1343 (1980). ArticleCAS Google Scholar
Cohen, A.S. & Skinner, M. New frontiers in the study of amyloidosis. New Engl. J. Med.323, 542 (1990). ArticleCAS Google Scholar
Lansbury, P.T., Jr. In pursuit of the molecular structure of amyloid plaque: New technology provides unexpected and critical information. Biochemistry31, 6865–6870 (1992). ArticleCAS Google Scholar
Jarrett, J.T. & Lansbury, P.T., Jr. Seeding the “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and Scrapie? Cell73, 1055–1058 (1993). ArticleCAS Google Scholar
Lotz, B., Gonthier-Vassal, A., Brack, A. & Magoshi, J. Twisted single crystals of Bombyx mori silk fibroin and related model polypeptides with β structure. J. molec. Biol.156, 345–357 (1982). ArticleCAS Google Scholar
Marsh, R.E., Corey, R.B. & Pauling, L. An investigation of the structure of silk fibroin. Biochim. biophys. Acta16, 1–34 (1955). ArticleCAS Google Scholar
Kosik, K.S. Alzheimer's disease: A cell biological perspective. Science256, 780–783 (1992). ArticleCAS Google Scholar
Kosik, K.S., Alzheimer's disease sphinx: A riddle with plaques and tangles. J. cell Biol.127, 1501–1514 (1994). ArticleCAS Google Scholar
Yankner, B.A. & Mesulam, M.-M. β-amyloid and the pathogenesis of Alzheimer's disease. New Eng. J. Med.325, 1849–1857 (1991). ArticleCAS Google Scholar
Selkoe, D. The molecular pathology of Alzheimer′s disease. Neuron6, 487–498 (1991). ArticleCAS Google Scholar
Seubert, P. et al Isolation and quantification of soluble Alzheimer′s β-peptide from biological fluids. Nature359, 325–327 (1992). ArticleCAS Google Scholar
Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science258, 126–129 (1992). ArticleCAS Google Scholar
Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature359, 322–325 (1992). ArticleCAS Google Scholar
Iwatsubo, T. et al. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron13, 45–53 (1994). ArticleCAS Google Scholar
Jarrett, J.T., Berger, E.P. & Lansbury, P.T., Jr. The carboxy terminus of β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry32, 4693–4697 (1993). ArticleCAS Google Scholar
Cai, X.-D., Golde, T.E. & Younkin, S.G. Release of excess amyloid β protein from a mutant amyloid protein precursor. Science259, 514–516 (1993). ArticleCAS Google Scholar
Suzuki, N. et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science264, 1336–1340 (1994). ArticleCAS Google Scholar
Tamaoka, A. et al. App717 Missense mutation affects the ratio of amyloid β protein species (Aβ1-42/43 and Aβ1-40) in familial Alzheimer's disease brain. J. biol. Chem.269, 32721–32724 (1994). CASPubMed Google Scholar
Halverson, K., Fraser, P.E., Kirschner, D.A. & Lansbury, P.T. Jr. Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic β-protein fragments. Biochemistry29, 2639–2644 (1990). ArticleCAS Google Scholar
Ashburn, T.T., Auger, M. & Lansbury, P.T., Jr. The structural basis of pancreatic amyloid formation: Isotope-edited spectroscopy in the solid state. J. Am. chem. Soc.114, 790–791 (1992). ArticleCAS Google Scholar
Halverson, K.H., Sucholeiki, I., Ashburn, T.T. & Lansbury, P.T., Jr. Location of β-sheet-forming sequences in amyloid proteins by FTIR. J. Am. chem. Soc.113, 6701–6703 (1991). ArticleCAS Google Scholar
Krimm, S. & Bandekar, J. Advances in protein chemistry (ed C. Anfinsen) 183–364 (Academic Press, Boston, 1986). Google Scholar
Saitô, H. Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn. reson. Chem.24, 835–852 (1986). Article Google Scholar
Spera, S. & Bax, A. Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J. Am. chem. Soc.113, 5490–5492 (1991). ArticleCAS Google Scholar
de Dios, A.C., Pearson, J.G. & Oldfield, E. Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach. Science260, 1491–1496 (1993). ArticleCAS Google Scholar
Griffiths, J.M. & Griffin, R.G. Nuclear magnetic resonance methods for measuring dipolar couplings in rotating solids. Analytica chim. Acta283, 1081–1101 (1993). ArticleCAS Google Scholar
Spencer, R.G.S., Halverson, K.J., Auger, M., McDermott, A.E;., Griffin, G.R. & Lansbury, P.T., Jr. An unusual peptide conformation may precipitate amyloid formation in Alzheimer's disease: Application of solid-state NMR to the determination of protein secondary structure. Biochemistry30, 10382–10387 (1991). ArticleCAS Google Scholar
Raleigh, D.P., Creuzet, F., Das Gupta, S.K., Levitt, M.H. & Griffin, R.G. Measurement of internuclear distances in polycrystalline solids: Rotationally enhanced transfer of nuclear spin magnetization. J. Am. chem. Soc.111, 4502–4503 (1989). ArticleCAS Google Scholar
Creuzet, F. et al. Determination of membrane protein structure by rotational resonance NMR: Bacteriorhodopsin. Science251, 783–786 (1991). ArticleCAS Google Scholar
Gu, Z. & McDermott, A. Chemical shielding anisotropy of protonated and deprotonated carboxylates in amino acids. J. Am. chem. Soc.115, 4282–4285 (1993). ArticleCAS Google Scholar
Griffiths, J. et al. Rotational resonance solid-state NMR elucidates a structural model of pancreatic amyloid. J. Am. chem. Soc.117, 3539–3546 (1995). ArticleCAS Google Scholar
Levitt, M.H., Raleigh, D.P., Creuzet, F. & Griffin, R.G. Theory and simulations of homonuclear spin pair systems in rotating solids. J. chem. Phys.92, 6347–6364 (1990). ArticleCAS Google Scholar
VanderHart, D.L., Earl, W.L. & Garroway, A.N. Resolution in 13C NMR of organic solids using high-power proton decoupling and magic-angle sample spinning. J. magn. Reson.44, 361–401 (1981). CAS Google Scholar
VanderHart, D.L. Influence of molecular packing on solid-state 13C chemical shifts: The _n_-alkanes. J magn. Reson.44, 117–125 (1981). CAS Google Scholar
Kennedy, S.D. & Bryant, R.G. Structural effects of hydration: studies of lysozyme by 13C solids NMR. Biopolymers29, 1801–1806 (1990). ArticleCAS Google Scholar
Gregory, R.B., Gangoda, M., Gilpin, R.K. & Su, W. The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy. Biopolymers33, 513–519 (1993). ArticleCAS Google Scholar
Harbison, G.S., Herzfeld, J. & Griffin, R.G. Solid state 15N NMR study of the Schiff base in bacteriorhodopsin. Biochemistry22, 1–5 (1983). ArticleCAS Google Scholar
Ishida, M., Asakura, T., Yokoi, M. & Saito, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy. Macromolecules23, 88–94 (1990). ArticleCAS Google Scholar
Stewart, D.E., Sarkar, A. & Wampler, J.E. Occurrence and role of Cis peptide bonds in protein structures. J. molec. Biol.214, 253–260 (1990). ArticleCAS Google Scholar
Chou, K.-C. & Scheraga, H.A. Origin of the right-handed twist of β-sheets of poly(LVal) chains. Proc. natn. Acad. Sci. U.S.A.79, 7047–7051 (1982). ArticleCAS Google Scholar
Chou, K.-C., Pottle, M., Nemethy, G., Ueda, Y. & Scheraga, H.A. Structure of β-Sheets. Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J. molec. Biol.162, 89–112 (1982). ArticleCAS Google Scholar
Chothia, C. Conformation of twisted β pleated sheets in proteins. J. molec. Biol.75, 295–302 (1973). ArticleCAS Google Scholar
Salemme, F.R. Structural properties of protein β sheets. Prog. Biophys. molec. Biol.42, 95–133 (1983). ArticleCAS Google Scholar
Baumann, U., Wu, S., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J.12, 3357–3364 (1993). ArticleCAS Google Scholar
Steinbacher, S. et al. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science265, 383–386 (1994). ArticleCAS Google Scholar
Yoder, M.D., Keen, N.T. & Jurnak, F. New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science260, 1503–1507 (1993). ArticleCAS Google Scholar
Jurnak, F., Yoder, M.D., Pickersgill, R. & Jenkins, J. Parallel β-domains: a new fold in protein structures. Curr. Opin. struct. Biol.4, 802–806 (1994). ArticleCAS Google Scholar
Lifson, S. & Sander, C. Specific recognition in the tertiary structure of β-sheets of proteins. J. molec. Biol.139, 627–639 (1980). ArticleCAS Google Scholar
von Heijne, G. & Blomberg, C. The β structure: Inter-strand correlations. J. molec. Biol.117, 821–824 (1977). ArticleCAS Google Scholar
Bromberg, S. & Dill, K.A. Side-chain entropy and packing in proteins. Prot. Sci.3, 997–1009 (1994). ArticleCAS Google Scholar
Dill, K.A. Dominant forces in protein folding. Biochemistry29, 7133–7155 (1990). ArticleCAS Google Scholar
Chan, H.S. & Dill, K.A. The protein folding problem. Physics Today, 24–32 (1993). ArticleCAS Google Scholar
Cohen, F.E. & Kuntz, I.D. in Prediction of protein structure and the principles of protein conformation (ed G.D. Fasman) 647–706, ch. 17 (New York: Plenum, New York, 1989). Book Google Scholar
Jarrett, J.T., Costa, P.R., Griffin, R.G. & Lansbury, P.T. Models of the C-terminus: Differences in amyloid structure may lead to segregation of “long” and “short” fibrils. J. Am. chem. Soc.116, 9741–9742 (1994). ArticleCAS Google Scholar
Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. comput. Chem.4, 187–217 (1983). ArticleCAS Google Scholar
Howarth, O.W. & Lilley, D.M. Carbon-13 NMR of peptides and proteins. Prog. nucl. magn. reson. Spectrosc.12, 1–40 (1978). ArticleCAS Google Scholar