Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating (original) (raw)

References

  1. Sukharev, S.I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657 (1997).
    Article CAS Google Scholar
  2. Booth, I.R. & Louis, P. Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr. Opin. Microbiol. 2, 166–169 (1999).
    Article CAS Google Scholar
  3. Wood, J.M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63, 230–262 (1999).
    CAS PubMed PubMed Central Google Scholar
  4. Hamill, O.P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).
    Article CAS Google Scholar
  5. Martinac, B. Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem. 11, 61–76 (2001).
    Article CAS Google Scholar
  6. Martinac, B., Buechner, M., Delcour, A.H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301 (1987).
    Article CAS Google Scholar
  7. Sukharev, S.I., Martinac, B., Arshavsky, V.Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993).
    Article CAS Google Scholar
  8. Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368, 265–268 (1994).
    Article CAS Google Scholar
  9. Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T. & Rees, D.C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).
    Article CAS Google Scholar
  10. Berrier, C., Coulombe, A., Houssin, C. & Ghazi, A. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett. 259, 27–32 (1989).
    Article CAS Google Scholar
  11. Cantor, R.S. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B 101, 1723–1725 (1997).
    Article CAS Google Scholar
  12. Cantor, R.S. Lipid composition and the lateral pressure profile in bilayers. Biophys J. 76, 2625–2639 (1999).
    Article CAS Google Scholar
  13. Mouritsen, O.G. & Bloom, M. Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153 (1984).
    Article CAS Google Scholar
  14. Gruner, S. in Biologically Inspired Physics (ed. Peliti, L.) 127–135 (Plenum, New York; 1991).
    Book Google Scholar
  15. Israelachvili, J. Intermolecular and Surface Forces (Academic Press, New York; 1992).
  16. Killian, J.A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta 1376, 401–415 (1998).
    Article CAS Google Scholar
  17. Cornea, R.L. & Thomas, D.D. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Biochemistry 33, 2912–2920 (1994).
    Article CAS Google Scholar
  18. Galbraith, T.P. & Wallace, B.A. Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin. Faraday Discuss. 111, 159–164 (1998).
    Article CAS Google Scholar
  19. Lundbaek, J.A. & Andersen, O.S. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys. J. 76, 889–895 (1999).
    Article CAS Google Scholar
  20. Dumas, F., Tocanne, J.F., Leblanc, G. & Lebrun, M.C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry 39, 4846–4854 (2000).
    Article CAS Google Scholar
  21. Lewis, B.A. & Engelman, D.M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983).
    Article CAS Google Scholar
  22. Gruner, S.M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82, 3665–3669 (1985).
    Article CAS Google Scholar
  23. Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990).
    Article CAS Google Scholar
  24. Lundbaek, J.A. & Andersen, O.S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104, 645–673 (1994).
    Article CAS Google Scholar
  25. Casado, M. & Ascher, P. Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J. Physiol. 513, 317–330 (1998).
    Article CAS Google Scholar
  26. Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M. & Honoré, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128–10133 (2000).
    Article CAS Google Scholar
  27. Mandersloot, J.G., Reman, F.C., Van Deenen, L.L. & De Gier, J. Barrier properties of lecithin/lysolecithin mixtures. Biochim. Biophys. Acta 382, 22–26 (1975).
    Article CAS Google Scholar
  28. Hubbell, W.L., Gross, A., Langen, R. & Lietzow, M.A. Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8, 649–656 (1998).
    Article CAS Google Scholar
  29. Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nature Struct. Biol. 7, 735–739 (2000).
    Article CAS Google Scholar
  30. Mchaourab, H. & Perozo, E. in Biological Magnetic Resonance Vol. 19 (ed. S. Eaton, G.E. & Berliner, L.) 155–218 (Kluwer-Plenum, New York; 2000).
    Google Scholar
  31. Perozo, E., Kloda, A., Cortes, D.M. & Martinac, B. Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J. Gen. Physiol. 118, 193–206 (2001).
    Article CAS Google Scholar
  32. Ou, X., Blount, P., Hoffman, R.J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 95, 11471–11475 (1998).
    Article CAS Google Scholar
  33. Sukharev, S., Betanzos, M., Chiang, C.-S. & Guy, H.R. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001).
    Article CAS Google Scholar
  34. Sukharev, S., Durell, S.R. & Guy, H.R. Structural models of the MscL gating mechanism. Biophys. J. 81, 917–936 (2001).
    Article CAS Google Scholar
  35. Gullingsrud, J., Kosztin, D. & Schulten, K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J. 80, 2074–2081 (2001).
    Article CAS Google Scholar
  36. Sukharev, S.I., Sigurdson, W.J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–540 (1999).
    Article CAS Google Scholar
  37. Delcour, A.H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989).
    Article CAS Google Scholar
  38. Häse, C.C., Le Dain, A.C. & Martinac, B. Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem. 270, 18329–18334 (1995).
    Article Google Scholar
  39. Cruickshank, C.C., Minchin, R.F., Le Dain, A.C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73, 1925–1931 (1997).
    Article CAS Google Scholar
  40. Cortes, D.M., Cuello, L.G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117, 165–180 (2001).
    Article CAS Google Scholar
  41. Mchaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704 (1996).
    Article CAS Google Scholar
  42. Columbus, L., Kálai, T., Jekö, J., Hideg, K. & Hubbell, W.L. Molecular motion of spin labeled side chains in α-helices: analysis by variation of side chain structure. Biochemistry 40, 3828–3846 (2001).
    Article CAS Google Scholar
  43. Perozo, E., Cortes, D.M. & Cuello, L.G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nature Struct. Biol. 5, 459–469 (1998).
    Article CAS Google Scholar

Download references