Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating (original) (raw)
References
Sukharev, S.I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol.59, 633–657 (1997). ArticleCAS Google Scholar
Booth, I.R. & Louis, P. Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr. Opin. Microbiol.2, 166–169 (1999). ArticleCAS Google Scholar
Wood, J.M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev.63, 230–262 (1999). CASPubMedPubMed Central Google Scholar
Hamill, O.P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev.81, 685–740 (2001). ArticleCAS Google Scholar
Martinac, B. Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem.11, 61–76 (2001). ArticleCAS Google Scholar
Martinac, B., Buechner, M., Delcour, A.H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA84, 2297–2301 (1987). ArticleCAS Google Scholar
Sukharev, S.I., Martinac, B., Arshavsky, V.Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J.65, 177–183 (1993). ArticleCAS Google Scholar
Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature368, 265–268 (1994). ArticleCAS Google Scholar
Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T. & Rees, D.C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science282, 2220–2226 (1998). ArticleCAS Google Scholar
Berrier, C., Coulombe, A., Houssin, C. & Ghazi, A. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett.259, 27–32 (1989). ArticleCAS Google Scholar
Cantor, R.S. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B101, 1723–1725 (1997). ArticleCAS Google Scholar
Cantor, R.S. Lipid composition and the lateral pressure profile in bilayers. Biophys J.76, 2625–2639 (1999). ArticleCAS Google Scholar
Mouritsen, O.G. & Bloom, M. Mattress model of lipid-protein interactions in membranes. Biophys. J.46, 141–153 (1984). ArticleCAS Google Scholar
Gruner, S. in Biologically Inspired Physics (ed. Peliti, L.) 127–135 (Plenum, New York; 1991). Book Google Scholar
Israelachvili, J. Intermolecular and Surface Forces (Academic Press, New York; 1992).
Killian, J.A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta1376, 401–415 (1998). ArticleCAS Google Scholar
Cornea, R.L. & Thomas, D.D. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Biochemistry33, 2912–2920 (1994). ArticleCAS Google Scholar
Galbraith, T.P. & Wallace, B.A. Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin. Faraday Discuss.111, 159–164 (1998). ArticleCAS Google Scholar
Lundbaek, J.A. & Andersen, O.S. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys. J.76, 889–895 (1999). ArticleCAS Google Scholar
Dumas, F., Tocanne, J.F., Leblanc, G. & Lebrun, M.C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry39, 4846–4854 (2000). ArticleCAS Google Scholar
Lewis, B.A. & Engelman, D.M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol.166, 211–217 (1983). ArticleCAS Google Scholar
Gruner, S.M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA82, 3665–3669 (1985). ArticleCAS Google Scholar
Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature348, 261–263 (1990). ArticleCAS Google Scholar
Lundbaek, J.A. & Andersen, O.S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol.104, 645–673 (1994). ArticleCAS Google Scholar
Casado, M. & Ascher, P. Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J. Physiol.513, 317–330 (1998). ArticleCAS Google Scholar
Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M. & Honoré, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem.275, 10128–10133 (2000). ArticleCAS Google Scholar
Mandersloot, J.G., Reman, F.C., Van Deenen, L.L. & De Gier, J. Barrier properties of lecithin/lysolecithin mixtures. Biochim. Biophys. Acta382, 22–26 (1975). ArticleCAS Google Scholar
Hubbell, W.L., Gross, A., Langen, R. & Lietzow, M.A. Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol.8, 649–656 (1998). ArticleCAS Google Scholar
Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nature Struct. Biol.7, 735–739 (2000). ArticleCAS Google Scholar
Mchaourab, H. & Perozo, E. in Biological Magnetic Resonance Vol. 19 (ed. S. Eaton, G.E. & Berliner, L.) 155–218 (Kluwer-Plenum, New York; 2000). Google Scholar
Perozo, E., Kloda, A., Cortes, D.M. & Martinac, B. Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J. Gen. Physiol.118, 193–206 (2001). ArticleCAS Google Scholar
Ou, X., Blount, P., Hoffman, R.J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA95, 11471–11475 (1998). ArticleCAS Google Scholar
Sukharev, S., Betanzos, M., Chiang, C.-S. & Guy, H.R. The gating mechanism of the large mechanosensitive channel MscL. Nature409, 720–724 (2001). ArticleCAS Google Scholar
Sukharev, S., Durell, S.R. & Guy, H.R. Structural models of the MscL gating mechanism. Biophys. J.81, 917–936 (2001). ArticleCAS Google Scholar
Gullingsrud, J., Kosztin, D. & Schulten, K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J.80, 2074–2081 (2001). ArticleCAS Google Scholar
Sukharev, S.I., Sigurdson, W.J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol.113, 525–540 (1999). ArticleCAS Google Scholar
Delcour, A.H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J.56, 631–636 (1989). ArticleCAS Google Scholar
Häse, C.C., Le Dain, A.C. & Martinac, B. Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem.270, 18329–18334 (1995). Article Google Scholar
Cruickshank, C.C., Minchin, R.F., Le Dain, A.C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J.73, 1925–1931 (1997). ArticleCAS Google Scholar
Cortes, D.M., Cuello, L.G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol.117, 165–180 (2001). ArticleCAS Google Scholar
Mchaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry35, 7692–7704 (1996). ArticleCAS Google Scholar
Columbus, L., Kálai, T., Jekö, J., Hideg, K. & Hubbell, W.L. Molecular motion of spin labeled side chains in α-helices: analysis by variation of side chain structure. Biochemistry40, 3828–3846 (2001). ArticleCAS Google Scholar
Perozo, E., Cortes, D.M. & Cuello, L.G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nature Struct. Biol.5, 459–469 (1998). ArticleCAS Google Scholar