Bacteriophage φ29 scaffolding protein gp7 before and after prohead assembly (original) (raw)

References

  1. Anderson, D. & Reilly, B. Morphogenesis of bacteriophage φ29. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (ed. Sonenshein, A.L., Hoch, J.A. & Losick, R.) 859–867 (American Society for Microbiology, Washington, DC, 1993).
    Google Scholar
  2. Tao, Y. et al. Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95, 431–437 (1998).
    Article CAS Google Scholar
  3. Hagen, E.W., Reilly, B.E., Tosi, M.E. & Anderson, D.L. Analysis of gene function of bacteriophage φ29 of Bacillus subtilis: identification of cistrons essential for viral assembly. J. Virol. 19, 501–517 (1976).
    CAS PubMed PubMed Central Google Scholar
  4. Guo, P. et al. Regulation of the phage φ29 prohead shape and size by the portal vertex. Virology 183, 366–373 (1991).
    Article CAS Google Scholar
  5. Guo, P., Peterson, C. & Anderson, D. Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage φ29. J. Mol. Biol. 197, 229–236 (1987).
    Article CAS Google Scholar
  6. Bjornsti, M.A., Reilly, B.E. & Anderson, D.L. Morphogenesis of bacteriophage φ29 of Bacillus subtilis: oriented and quantized in vitro packaging of DNA-protein gp3. J. Virol. 45, 383–396 (1983).
    CAS PubMed PubMed Central Google Scholar
  7. Crick, F.H.C. The packing of α-helices: simple coiled-coils. Acta Crystallogr. 6, 689–697 (1953).
    Article CAS Google Scholar
  8. Branden, C. & Tooze, J. Introduction to Protein Structure (Garland Publishing, New York and London, 1991).
    Google Scholar
  9. Lee, C.S. & Guo, P. Sequential interactions of structural proteins in phage φ29 procapsid assembly. J. Virol. 69, 5024–5032 (1995).
    CAS PubMed PubMed Central Google Scholar
  10. Fane, B.A. & Prevelige, P.E. Jr. Mechanism of scaffolding-assisted viral assembly. Adv. Prot. Chem. (in the press).
  11. Sun, Y. et al. Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus. J. Mol. Biol. 297, 1195–1202 (2000).
    Article CAS Google Scholar
  12. Thuman-Commike, P.A. et al. Identification of additional coat-scaffolding interactions in a bacteriophage P22 mutant defective in maturation. J. Virol. 74, 3871–3873 (2000).
    Article CAS Google Scholar
  13. Jiang, W. et al. Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat. Struct. Biol. 10, 131–135 (2003).
    Article CAS Google Scholar
  14. Peterson, C. et al. Composition and mass of the bacteriophage φ29 prohead and virion. J. Struct. Biol. 135, 18–25 (2001).
    Article CAS Google Scholar
  15. Parker, M.H., Brouillette, C.G. & Prevelige, P.E. Jr. Kinetic and calorimetric evidence for two distinct scaffolding protein binding populations within the bacteriophage P22 procapsid. Biochemistry 40, 8962–8970 (2001).
    Article CAS Google Scholar
  16. Aebi, U. et al. The transformation of τ particles into T4 heads. II. Transformations of the surface lattice and related observations on form determination. J. Supramol. Struct. 2, 253–275 (1974).
    Article CAS Google Scholar
  17. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein–DNA complex. Cell 71, 1223–1237 (1992).
    Article CAS Google Scholar
  18. Wichitwechkarn, J., Bailey, S., Bodley, J.W. & Anderson, D. Prohead RNA of bacteriophage φ29: size, stoichiometry and biological activity. Nucleic Acids Res. 17, 3459–3468 (1989).
    Article CAS Google Scholar
  19. Grimes, S. & Anderson, D. The bacteriophage φ29 packaging proteins supercoil the DNA ends. J. Mol. Biol. 266, 901–914 (1997).
    Article CAS Google Scholar
  20. Cowtan, K.D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D 49, 148–157 (1993).
    Article CAS Google Scholar
  21. Cowtan, K.D. 'dm': an automated procedure for phase improvement by density modification. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography Vol. 31 (Daresbury Laboratory, Warrington, UK, 1994), 34–38.
    Google Scholar
  22. Rossmann, M.G. The molecular replacement method. Acta Crystallogr. A 46, 73–82 (1990).
    Article Google Scholar
  23. Navaza, J. AMoRe—an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).
    Article Google Scholar
  24. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article Google Scholar
  25. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar

Download references