Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell108, 475–487 (2002). ArticleCASPubMed Google Scholar
Varga-Weisz, P. Chromatin remodeling factors and DNA replication. Prog. Mol. Subcell. Biol.38, 1–30 (2005). ArticleCASPubMed Google Scholar
Ataian, Y. & Krebs, J.E. Five repair pathways in one context: chromatin modification during DNA repair. Biochem. Cell Biol.84, 490–504 (2006). ArticleCASPubMed Google Scholar
Jaskelioff, M., Van Komen, S., Krebs, J.E., Sung, P. & Peterson, C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem.278, 9212–9218 (2003). ArticleCASPubMed Google Scholar
van Attikum, H. & Gasser, S.M. ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle4, 1011–1014 (2005). ArticleCASPubMed Google Scholar
Eisen, J.A., Sweder, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res.23, 2715–2723 (1995). ArticleCASPubMedPubMed Central Google Scholar
Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res.34, 2887–2905 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fazzio, T.G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell12, 1333–1340 (2003). ArticleCASPubMed Google Scholar
Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol.13, 633–640 (2006). ArticleCASPubMed Google Scholar
Papamichos-Chronakis, M., Krebs, J.E. & Peterson, C.L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev.20, 2437–2449 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). ArticleCASPubMed Google Scholar
Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature406, 541–544 (2000). ArticleCASPubMed Google Scholar
Morrison, A.J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell119, 767–775 (2004). ArticleCASPubMed Google Scholar
Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science294, 115–121 (2001). ArticleCASPubMed Google Scholar
McCarroll, R.M. & Fangman, W.L. Time of replication of yeast centromeres and telomeres. Cell54, 505–513 (1988). ArticleCASPubMed Google Scholar
Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells7, 781–789 (2002). ArticleCASPubMed Google Scholar
Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol.8, 148–155 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wyrick, J.J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science294, 2357–2360 (2001). ArticleCASPubMed Google Scholar
Nieduszynski, C.A., Knox, Y. & Donaldson, A.D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev.20, 1874–1879 (2006). ArticleCASPubMedPubMed Central Google Scholar
Santocanale, C. & Diffley, J.F.A. Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature395, 615–618 (1998). ArticleCASPubMed Google Scholar
Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature395, 618–621 (1998). ArticleCASPubMed Google Scholar
Tercero, J.A. & Diffley, J.F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature412, 553–557 (2001). ArticleCASPubMed Google Scholar
Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol.21, 6450–6460 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chang, M., Bellaoui, M., Boone, C. & Brown, G.W. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc. Natl. Acad. Sci. USA99, 16934–16939 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sugino, A. Yeast DNA polymerases and their role at the replication fork. Trends Biochem. Sci.20, 319–323 (1995). ArticleCASPubMed Google Scholar
Burgers, P.M. Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma107, 218–227 (1998). ArticleCASPubMed Google Scholar
Papamichos-Chronakis, M. & Peterson, C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol.15, 338–345 (2008). ArticleCASPubMed Google Scholar
Donaldson, A.D. et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell2, 173–182 (1998). ArticleCASPubMed Google Scholar
Falbo, K.B. & Shen, X. Chromatin remodeling in DNA replication. J. Cell. Biochem.97, 684–689 (2006). ArticleCASPubMed Google Scholar
Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell11, 341–351 (2003). ArticleCASPubMed Google Scholar
Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet.32, 627–632 (2002). ArticleCASPubMed Google Scholar
Bozhenok, L., Wade, P.A. & Varga-Weisz, P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J.21, 2231–2241 (2002). ArticleCASPubMedPubMed Central Google Scholar
Poot, R.A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat. Cell Biol.6, 1236–1244 (2004). ArticleCASPubMed Google Scholar
Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J.24, 120–127 (2005). ArticlePubMed Google Scholar
Thomas, B.J. & Rothstein, R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of Rad52 and Rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics123, 725–738 (1989). CASPubMedPubMed Central Google Scholar
Zhao, X., Muller, E.G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell2, 329–340 (1998). ArticleCASPubMed Google Scholar
Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res.24, 2519–2524 (1996). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast15, 1541–1553 (1999). ArticleCASPubMed Google Scholar
Lindstrom, K.C., Vary, J.C. Jr, Parthun, M.R., Delrow, J. & Tsukiyama, T. Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression. Mol. Cell. Biol.26, 6117–6129 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gelbart, M.E., Bachman, N., Delrow, J., Boeke, J.D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev.19, 942–954 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nieduszynski, C.A., Hiraga, S., Ak, P., Benham, C.J. & Donaldson, A.D. OriDB: a DNA replication origin database. Nucleic Acids Res.35, D40–D46 (2007). ArticleCASPubMed Google Scholar