Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem.72, 175–207 (2003). ArticleCAS Google Scholar
Chernomordik, L.V., Zimmerberg, J. & Kozlov, M.M. Membranes of the world unite! J. Cell Biol.175, 201–207 (2006). ArticleCAS Google Scholar
Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol.84, 404–420 (1980). One of several papers in which Helenius, Simons and their co-workers showed that the acidic pH of an endosome is a trigger for viral fusion. The demonstration that viruses have evolved to 'sense' the local proton concentration was a contribution both to our knowledge of viral entry mechanisms and to our understanding of the properties of endocytic pathways more generally. ArticleCAS Google Scholar
White, J. & Helenius, A. pH-dependent fusion between Semliki Forest virus membrane and liposomes. Proc. Natl. Acad. Sci. USA77, 3273–3277 (1980). ArticleCAS Google Scholar
Kuzmin, P.I., Zimmerberg, J., Chizmadzhev, Y.A. & Cohen, F.S. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA98, 7235–7240 (2001). ArticleCAS Google Scholar
Zimmerberg, J., Blumenthal, R., Sarkar, D.P., Curran, M. & Morris, S.J. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J. Cell Biol.127, 1885–1894 (1994). ArticleCAS Google Scholar
Plonsky, I. & Zimmerberg, J. The initial fusion pore induced by baculovirus GP64 is large and forms quickly. J. Cell Biol.135, 1831–1839 (1996). ArticleCAS Google Scholar
Melikyan, G.B., Markosyan, R.M., Brener, S.A., Rozenberg, Y. & Cohen, F.S. Role of the cytoplasmic tail of ecotropic Moloney murine leukemia virus Env protein in fusion pore formation. J. Virol.74, 447–455 (2000). ArticleCAS Google Scholar
Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem.69, 531–569 (2000). ArticleCAS Google Scholar
Modis, Y., Ogata, S., Clements, D. & Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA100, 6986–6991 (2003). ArticleCAS Google Scholar
Modis, Y., Ogata, S., Clements, D. & Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature427, 313–319 (2004). ArticleCAS Google Scholar
Roche, S., Bressanelli, S., Rey, F.A. & Gaudin, Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science313, 187–191 (2006). ArticleCAS Google Scholar
Roche, S., Rey, F.A., Gaudin, Y. & Bressanelli, S. Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science315, 843–848 (2007). ArticleCAS Google Scholar
Yin, H.S., Paterson, R.G., Wen, X., Lamb, R.A. & Jardetzky, T.S. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc. Natl. Acad. Sci. USA102, 9288–9293 (2005). ArticleCAS Google Scholar
Yin, H.S., Wen, X., Paterson, R.G., Lamb, R.A. & Jardetzky, T.S. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature439, 38–44 (2006). ArticleCAS Google Scholar
Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell105, 137–148 (2001). ArticleCAS Google Scholar
Gibbons, D.L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature427, 320–325 (2004). ArticleCAS Google Scholar
Wilson, I.A., Skehel, J.J. & Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature289, 366–373 (1981). The ground-breaking initial structural result of the Skehel-Wiley collaboration on the influenza virus hemagglutinin. A milestone in structural biology and surface-glycoprotein biochemistry, this paper antedated by nearly 15 years the next report of a distinct viral fusion-protein structure. It helped shape the entire field of enveloped virus entry and viral antigenicity. ArticleCAS Google Scholar
Wiley, D.C., Wilson, I.A. & Skehel, J.J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature289, 373–378 (1981). ArticleCAS Google Scholar
Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature371, 37–43 (1994). This paper, which reports the structure of the post-fusion conformation of influenza virus HA2, capped a twelve-year effort to visualize the product of the conformational transition discovered by Skehelet al.23. The extent of the HA2 refolding was unanticipated, and seeing it changed our appreciation of the likely repertoire of protein conformational transitions. ArticleCAS Google Scholar
Chen, J. et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell95, 409–417 (1998). ArticleCAS Google Scholar
Weis, W. et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature333, 426–431 (1988). ArticleCAS Google Scholar
Skehel, J.J. et al. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl. Acad. Sci. USA79, 968–972 (1982). The discovery that proton binding (low pH) triggers a profound conformational change in influenza virus hemagglutinin. The authors were able to infer the essential characteristics (although not yet the extent) of the conformational change in hemagglutinin, by insightful use of selective proteolysis and by thoughtful interpretation of solubilizing effects of nonionic detergents. ArticleCAS Google Scholar
Chen, J., Skehel, J.J. & Wiley, D.C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. Proc. Natl. Acad. Sci. USA96, 8967–8972 (1999). ArticleCAS Google Scholar
Carr, C.M. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell73, 823–832 (1993). ArticleCAS Google Scholar
Daniels, R.S. et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell40, 431–439 (1985). ArticleCAS Google Scholar
Han, X., Bushweller, J.H., Cafiso, D.S. & Tamm, L.K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol.8, 715–720 (2001). ArticleCAS Google Scholar
Borrego-Diaz, E., Peeples, M.E., Markosyan, R.M., Melikyan, G.B. & Cohen, F.S. Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. Virology316, 234–244 (2003). ArticleCAS Google Scholar
Park, H.E., Gruenke, J.A. & White, J.M. Leash in the groove mechanism of membrane fusion. Nat. Struct. Biol.10, 1048–1053 (2003). ArticleCAS Google Scholar
Heinz, F.X. et al. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology198, 109–117 (1994). ArticleCAS Google Scholar
Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol.10, 907–912 (2003). ArticleCAS Google Scholar
Mukhopadhyay, S., Kim, B.S., Chipman, P.R., Rossmann, M.G. & Kuhn, R.J. Structure of West Nile virus. Science302, 248 (2003). ArticleCAS Google Scholar
Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C. & Harrison, S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature375, 291–298 (1995). ArticleCAS Google Scholar
Allison, S.L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol.69, 695–700 (1995). CASPubMedPubMed Central Google Scholar
Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J.23, 728–738 (2004). ArticleCAS Google Scholar
Stiasny, K., Kossl, C., Lepault, J., Rey, F.A. & Heinz, F.X. Characterization of a structural intermediate of flavivirus membrane fusion. PLoS Pathog.3, e20 (2007). Article Google Scholar
Kampmann, T., Mueller, D.S., Mark, A.E., Young, P.R. & Kobe, B. The role of histidine residues in low-pH-mediated viral membrane fusion. Structure14, 1481–1487 (2006). ArticleCAS Google Scholar
Roche, S. & Gaudin, Y. Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. Virology297, 128–135 (2002). ArticleCAS Google Scholar
Durrer, P., Gaudin, Y., Ruigrok, R.W., Graf, R. & Brunner, J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem.270, 17575–17581 (1995). ArticleCAS Google Scholar
Heldwein, E.E. et al. Crystal structure of glycoprotein B from herpes simplex virus 1. Science313, 217–220 (2006). ArticleCAS Google Scholar
Hannah, B.P., Heldwein, E.E., Bender, F.C., Cohen, G.H. & Eisenberg, R.J. Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B. J. Virol.81, 4858–4865 (2007). ArticleCAS Google Scholar
Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P. & Cunningham, J.M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science308, 1643–1645 (2005). ArticleCAS Google Scholar
Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA102, 11876–11881 (2005). ArticleCAS Google Scholar
Schornberg, K. et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol.80, 4174–4178 (2006). ArticleCAS Google Scholar
Godley, L. et al. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell68, 635–645 (1992). ArticleCAS Google Scholar
Stiasny, K., Allison, S.L., Schalich, J. & Heinz, F.X. Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J. Virol.76, 3784–3790 (2002). ArticleCAS Google Scholar
Liao, M. & Kielian, M. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J. Cell Biol.171, 111–120 (2005). ArticleCAS Google Scholar
Russell, C.J., Jardetzky, T.S. & Lamb, R.A. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J.20, 4024–4034 (2001). ArticleCAS Google Scholar
Blacklow, S.C., Lu, M. & Kim, P.S. A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry34, 14955–14962 (1995). ArticleCAS Google Scholar
Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell89, 263–273 (1997). ArticleCAS Google Scholar
Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature387, 426–430 (1997). ArticleCAS Google Scholar
Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. & Matthews, T.J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA91, 9770–9774 (1994). ArticleCAS Google Scholar
Furuta, R.A., Wild, C.T., Weng, Y. & Weiss, C.D. Capture of an early fusion-active conformation of HIV-1 gp41. Nat. Struct. Biol.5, 276–279 (1998). ArticleCAS Google Scholar
Munoz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E. & Blumenthal, R. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J. Cell Biol.140, 315–323 (1998). ArticleCAS Google Scholar
Kilby, J.M. & Eron, J.J. Novel therapies based on mechanisms of HIV-1 cell entry. N. Engl. J. Med.348, 2228–2238 (2003). ArticleCAS Google Scholar
Reeves, J.D. et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc. Natl. Acad. Sci. USA99, 16249–16254 (2002). ArticleCAS Google Scholar
Reeves, J.D. et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J. Virol.79, 4991–4999 (2005). ArticleCAS Google Scholar
Frey, G. et al. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc. Natl. Acad. Sci. USA105, 3739–3744 (2008). ArticleCAS Google Scholar
Danieli, T., Pelletier, S.L., Henis, Y.I. & White, J.M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J. Cell Biol.133, 559–569 (1996). ArticleCAS Google Scholar
Yang, X., Kurteva, S., Ren, X., Lee, S. & Sodroski, J. Subunit stoichiometry of human immunodeficiency virus type 1 envelope glycoprotein trimers during virus entry into host cells. J. Virol.80, 4388–4395 (2006). ArticleCAS Google Scholar
Rand, R.P. & Parsegian, V.A. Physical force considerations in model and biological membranes. Can. J. Biochem. Cell Biol.62, 752–759 (1984). ArticleCAS Google Scholar
Sun, Z.Y. et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity28, 52–63 (2008). Article Google Scholar
Kemble, G.W., Danieli, T. & White, J.M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell76, 383–391 (1994). ArticleCAS Google Scholar
Melikyan, G.B., White, J.M. & Cohen, F.S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J. Cell Biol.131, 679–691 (1995). ArticleCAS Google Scholar
Armstrong, R.T., Kushnir, A.S. & White, J.M. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J. Cell Biol.151, 425–437 (2000). ArticleCAS Google Scholar
Frey, G. et al. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc. Natl. Acad. Sci. USA103, 13938–13943 (2006). ArticleCAS Google Scholar
Lin, P.F. et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl. Acad. Sci. USA100, 11013–11018 (2003). ArticleCAS Google Scholar
Chen, B. et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature433, 834–841 (2005). ArticleCAS Google Scholar