The pathway of hepatitis C virus mRNA recruitment to the human ribosome (original) (raw)
References
Pestova, T.V., Lorsch, J.R. & Hellen, C.U.T. The mechanism of translation initiation in eukaryotes. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.B.) 87–128 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007). Google Scholar
Fraser, C.S. & Doudna, J.A. Quantitative studies of ribosome conformational dynamics. Q. Rev. Biophys.40, 163–189 (2007). ArticleCAS Google Scholar
Doudna, J.A. & Sarnow, P. Translation initiation by viral internal ribosome entry sites. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.B.) 129–153 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007). Google Scholar
Elroy-Stein, O. & Merrick, W.C. translation initiation via cellular internal ribosome entry sites. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.B.) 155–172 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007). Google Scholar
Pisarev, A.V., Shirokikh, N.E. & Hellen, C.U. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C. R. Biol.328, 589–605 (2005). ArticleCAS Google Scholar
Fraser, C.S. & Doudna, J.A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat. Rev. Microbiol.5, 29–38 (2007). ArticleCAS Google Scholar
Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev.12, 67–83 (1998). ArticleCAS Google Scholar
Trachsel, H., Erni, B., Schreier, M.H. & Staehelin, T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol.116, 755–767 (1977). ArticleCAS Google Scholar
Benne, R. & Hershey, J.W. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem.253, 3078–3087 (1978). CASPubMed Google Scholar
Ji, H., Fraser, C.S., Yu, Y., Leary, J. & Doudna, J.A. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc. Natl. Acad. Sci. USA101, 16990–16995 (2004). ArticleCAS Google Scholar
Spahn, C.M. et al. Structure of the 80S ribosome from _Saccharomyces cerevisiae_–tRNA-ribosome and subunit-subunit interactions. Cell107, 373–386 (2001). ArticleCAS Google Scholar
Taylor, D.J., Frank, J. & Kinzy, T.G. Structure and function of the eukaryotic ribosome and elongation fractors. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.B.) pp. 59–85 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007). Google Scholar
Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science291, 1959–1962 (2001). ArticleCAS Google Scholar
Passmore, L.A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell26, 41–50 (2007). ArticleCAS Google Scholar
Kolupaeva, V.G., Pestova, T.V. & Hellen, C.U. An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J. Virol.74, 6242–6250 (2000). ArticleCAS Google Scholar
Otto, G.A. & Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell119, 369–380 (2004). ArticleCAS Google Scholar
Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell118, 465–475 (2004). ArticleCAS Google Scholar
Unbehaun, A., Borukhov, S.I., Hellen, C.U. & Pestova, T.V. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev.18, 3078–3093 (2004). ArticleCAS Google Scholar
Fraser, C.S., Berry, K.E., Hershey, J.W. & Doudna, J.A. eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol. Cell26, 811–819 (2007). ArticleCAS Google Scholar
Pisarev, A.V., Hellen, C.U. & Pestova, T.V. Recycling of eukaryotic posttermination ribosomal complexes. Cell131, 286–299 (2007). ArticleCAS Google Scholar
Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol.164, 419–425 (1988). ArticleCAS Google Scholar
Anthony, D.D. & Merrick, W.C. Analysis of 40 S and 80 S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. J. Biol. Chem.267, 1554–1562 (1992). CASPubMed Google Scholar
Kozak, M. Primer extension analysis of eukaryotic ribosome-mRNA complexes. Nucleic Acids Res.26, 4853–4859 (1998). ArticleCAS Google Scholar
Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA7, 194–206 (2001). ArticleCAS Google Scholar
ElAntak, L., Tzakos, A.G., Locker, N. & Lukavsky, P.J. Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J. Biol. Chem.282, 8165–8174 (2007). ArticleCAS Google Scholar
Joseph, S. & Noller, H.F. Directed hydroxyl radical probing using iron(II) tethered to RNA. Methods Enzymol.318, 175–190 (2000). ArticleCAS Google Scholar
Reynolds, J.E. et al. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J.14, 6010–6020 (1995). ArticleCAS Google Scholar
Jivotovskaya, A.V., Valasek, L., Hinnebusch, A.G. & Nielsen, K.H. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol. Cell. Biol.26, 1355–1372 (2006). ArticleCAS Google Scholar
Pisarev, A.V., Kolupaeva, V.G., Yusupov, M.M., Hellen, C.U. & Pestova, T.V. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J.27, 1609–1621 (2008). ArticleCAS Google Scholar
Pestova, T.V. & Kolupaeva, V.G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev.16, 2906–2922 (2002). ArticleCAS Google Scholar
Fraser, C.S. et al. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro. J. Biol. Chem.279, 8946–8956 (2004). ArticleCAS Google Scholar
Pestova, T.V. & Hellen, C.U. Preparation and activity of synthetic unmodified mammalian tRNAi(Met) in initiation of translation in vitro. RNA7, 1496–1505 (2001). ArticleCAS Google Scholar
Spanggord, R.J., Siu, F., Ke, A. & Doudna, J.A. RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle. Nat. Struct. Mol. Biol.12, 1116–1122 (2005). ArticleCAS Google Scholar
Kieft, J.S. et al. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J. Mol. Biol.292, 513–529 (1999). ArticleCAS Google Scholar
Lomakin, I.B., Kolupaeva, V.G., Marintchev, A., Wagner, G. & Pestova, T.V. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev.17, 2786–2797 (2003). ArticleCAS Google Scholar
Culver, G.M. & Noller, H.F. Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol.318, 461–475 (2000). ArticleCAS Google Scholar
Pisarev, A.V., Unbehaun, A., Hellen, C.U. & Pestova, T.V. Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol.430, 147–177 (2007). ArticleCAS Google Scholar