Mre11–Rad50–Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks (original) (raw)
References
San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem.77, 229–257 (2008). ArticleCASPubMed Google Scholar
Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J.23, 4868–4875 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature431, 1011–1017 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet.40, 363–383 (2006). ArticleCASPubMed Google Scholar
Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet.38, 233–271 (2004). ArticleCASPubMed Google Scholar
Vaze, M.B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell10, 373–385 (2002). ArticleCASPubMed Google Scholar
Fishman-Lobell, J., Rudin, N. & Haber, J.E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol.12, 1292–1303 (1992). ArticleCASPubMedPubMed Central Google Scholar
Zierhut, C. & Diffley, J.F. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J.27, 1875–1885 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chung, W.H., Zhu, Z., Papusha, A., Malkova, A. & Ira, G. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet.6, e1000948 (2010). ArticlePubMedPubMed Central Google Scholar
Barlow, J.H., Lisby, M. & Rothstein, R. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell30, 73–85 (2008). ArticleCASPubMedPubMed Central Google Scholar
Alani, E., Padmore, R. & Kleckner, N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell61, 419–436 (1990). ArticleCASPubMed Google Scholar
Nairz, K. & Klein, F. mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev.11, 2272–2290 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tsubouchi, H. & Ogawa, H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol.18, 260–268 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ivanov, E.L., Sugawara, N., White, C.I., Fabre, F. & Haber, J.E. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol.14, 3414–3425 (1994). ArticleCASPubMedPubMed Central Google Scholar
Clerici, M., Mantiero, D., Lucchini, G. & Longhese, M.P. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem.280, 38631–38638 (2005). ArticleCASPubMed Google Scholar
Paull, T.T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell1, 969–979 (1998). ArticleCASPubMed Google Scholar
Connelly, J.C., de Leau, E.S. & Leach, D.R.F. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res.27, 1039–1046 (1999). ArticleCASPubMedPubMed Central Google Scholar
Trujillo, K.M. & Sung, P. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50–Mre11 complex. J. Biol. Chem.276, 35458–35464 (2001). ArticleCASPubMed Google Scholar
Hopfner, K.P. et al. Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J. Bacteriol.182, 6036–6041 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moreau, S., Ferguson, J.R. & Symington, L.S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol.19, 556–566 (1999). ArticleCASPubMedPubMed Central Google Scholar
Llorente, B. & Symington, L.S. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol. Cell. Biol.24, 9682–9694 (2004). ArticleCASPubMedPubMed Central Google Scholar
Usui, T. et al. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell95, 705–716 (1998). ArticleCASPubMed Google Scholar
Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature455, 770–774 (2008). ArticleCASPubMed Google Scholar
Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell134, 981–994 (2008). ArticleCASPubMedPubMed Central Google Scholar
Budd, M.E. & Campbell, J.L. Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS ONE4, e4267 (2009). ArticlePubMedPubMed Central Google Scholar
Hopkins, B.B. & Paull, T.T. The P. furiosus Mre11/Rad50 complex promotes 5′ strand resection at a DNA double-strand break. Cell135, 250–260 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lengsfeld, B.M., Rattray, A.J., Bhaskara, V., Ghirlando, R. & Paull, T.T. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell28, 638–651 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tran, P.T., Erdeniz, N., Dudley, S. & Liskay, R.M. Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair (Amst.)1, 895–912 (2002). ArticleCAS Google Scholar
Trujillo, K.M., Yuan, S.S., Lee, E.Y. & Sung, P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem.273, 21447–21450 (1998). ArticleCASPubMed Google Scholar
Yang, S.W. & Nash, H.A. Specific photocrosslinking of DNA-protein complexes: identification of contacts between integration host factor and its target DNA. Proc. Natl. Acad. Sci. USA91, 12183–12187 (1994). ArticleCASPubMedPubMed Central Google Scholar
Thomas, K.R. & Olivera, B.M. Processivity of DNA exonucleases. J. Biol. Chem.253, 424–429 (1978). CASPubMed Google Scholar
Chamankhah, M., Fontanie, T. & Xiao, W. The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics155, 569–576 (2000). CASPubMedPubMed Central Google Scholar
Moreau, S., Morgan, E.A. & Symington, L.S. Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics159, 1423–1433 (2001). CASPubMedPubMed Central Google Scholar
Lewis, L.K., Karthikeyan, G., Westmoreland, J.W. & Resnick, M.A. Differential suppression of DNA repair deficiencies of yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase). Genetics160, 49–62 (2002). CASPubMedPubMed Central Google Scholar
Lee, S.E., Bressan, D.A., Petrini, J.H. & Haber, J.E. Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst.)1, 27–40 (2002). ArticleCAS Google Scholar
Paull, T.T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev.13, 1276–1288 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science308, 551–554 (2005). ArticleCASPubMed Google Scholar
Nimonkar, A.V., Ozsoy, A.Z., Genschel, J., Modrich, P. & Kowalczykowski, S.C. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl. Acad. Sci. USA105, 16906–16911 (2008). ArticleCASPubMedPubMed Central Google Scholar
Milman, N., Higuchi, E. & Smith, G.R. Meiotic DNA double-strand break repair requires two nucleases, MRN and Ctp1, to produce a single size class of Rec12 (Spo11)-oligonucleotide complexes. Mol. Cell. Biol.29, 5998–6005 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hartsuiker, E. et al. Ctp1CtIP and Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol. Cell. Biol.29, 1671–1681 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rothenberg, M., Kohli, J. & Ludin, K. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast. PLoS Genet.5, e1000722 (2009). ArticlePubMedPubMed Central Google Scholar
Hartsuiker, E., Neale, M.J. & Carr, A.M. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol. Cell33, 117–123 (2009). ArticleCASPubMedPubMed Central Google Scholar
Buis, J. et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell135, 85–96 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lisby, M., Barlow, J.H., Burgess, R.C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell118, 699–713 (2004). ArticleCASPubMed Google Scholar
Lee, K., Zhang, Y. & Lee, S.E. Saccharomyces cerevisiae ATM ortholog suppresses break-induced chromosome translocations. Nature454, 543–546 (2008). ArticleCASPubMed Google Scholar