Mre11–Rad50–Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks (original) (raw)

References

  1. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).
    Article CAS PubMed Google Scholar
  2. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  3. Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1017 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  4. Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet. 40, 363–383 (2006).
    Article CAS PubMed Google Scholar
  5. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).
    Article CAS PubMed Google Scholar
  6. Vaze, M.B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385 (2002).
    Article CAS PubMed Google Scholar
  7. Fishman-Lobell, J., Rudin, N. & Haber, J.E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12, 1292–1303 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  8. Zierhut, C. & Diffley, J.F. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875–1885 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  9. Chung, W.H., Zhu, Z., Papusha, A., Malkova, A. & Ira, G. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet. 6, e1000948 (2010).
    Article PubMed PubMed Central Google Scholar
  10. Barlow, J.H., Lisby, M. & Rothstein, R. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell 30, 73–85 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  11. Alani, E., Padmore, R. & Kleckner, N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436 (1990).
    Article CAS PubMed Google Scholar
  12. Nairz, K. & Klein, F. mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11, 2272–2290 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  13. Tsubouchi, H. & Ogawa, H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18, 260–268 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  14. Ivanov, E.L., Sugawara, N., White, C.I., Fabre, F. & Haber, J.E. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3414–3425 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  15. Clerici, M., Mantiero, D., Lucchini, G. & Longhese, M.P. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem. 280, 38631–38638 (2005).
    Article CAS PubMed Google Scholar
  16. Paull, T.T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).
    Article CAS PubMed Google Scholar
  17. Connelly, J.C., de Leau, E.S. & Leach, D.R.F. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res. 27, 1039–1046 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  18. Trujillo, K.M. & Sung, P. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50–Mre11 complex. J. Biol. Chem. 276, 35458–35464 (2001).
    Article CAS PubMed Google Scholar
  19. Hopfner, K.P. et al. Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J. Bacteriol. 182, 6036–6041 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  20. Moreau, S., Ferguson, J.R. & Symington, L.S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  21. Llorente, B. & Symington, L.S. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol. Cell. Biol. 24, 9682–9694 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  22. Usui, T. et al. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95, 705–716 (1998).
    Article CAS PubMed Google Scholar
  23. Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).
    Article CAS PubMed Google Scholar
  24. Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  25. Budd, M.E. & Campbell, J.L. Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS ONE 4, e4267 (2009).
    Article PubMed PubMed Central Google Scholar
  26. Hopkins, B.B. & Paull, T.T. The P. furiosus Mre11/Rad50 complex promotes 5′ strand resection at a DNA double-strand break. Cell 135, 250–260 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  27. Lengsfeld, B.M., Rattray, A.J., Bhaskara, V., Ghirlando, R. & Paull, T.T. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28, 638–651 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  28. Tran, P.T., Erdeniz, N., Dudley, S. & Liskay, R.M. Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair (Amst.) 1, 895–912 (2002).
    Article CAS Google Scholar
  29. Trujillo, K.M., Yuan, S.S., Lee, E.Y. & Sung, P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273, 21447–21450 (1998).
    Article CAS PubMed Google Scholar
  30. Yang, S.W. & Nash, H.A. Specific photocrosslinking of DNA-protein complexes: identification of contacts between integration host factor and its target DNA. Proc. Natl. Acad. Sci. USA 91, 12183–12187 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  31. Thomas, K.R. & Olivera, B.M. Processivity of DNA exonucleases. J. Biol. Chem. 253, 424–429 (1978).
    CAS PubMed Google Scholar
  32. Niu, H. et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467, 108–111 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  33. Cejka, P. et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467, 112–116 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  34. Chamankhah, M., Fontanie, T. & Xiao, W. The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155, 569–576 (2000).
    CAS PubMed PubMed Central Google Scholar
  35. Moreau, S., Morgan, E.A. & Symington, L.S. Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics 159, 1423–1433 (2001).
    CAS PubMed PubMed Central Google Scholar
  36. Lewis, L.K., Karthikeyan, G., Westmoreland, J.W. & Resnick, M.A. Differential suppression of DNA repair deficiencies of yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase). Genetics 160, 49–62 (2002).
    CAS PubMed PubMed Central Google Scholar
  37. Lee, S.E., Bressan, D.A., Petrini, J.H. & Haber, J.E. Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst.) 1, 27–40 (2002).
    Article CAS Google Scholar
  38. Paull, T.T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  39. Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005).
    Article CAS PubMed Google Scholar
  40. Nimonkar, A.V., Ozsoy, A.Z., Genschel, J., Modrich, P. & Kowalczykowski, S.C. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl. Acad. Sci. USA 105, 16906–16911 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  41. Milman, N., Higuchi, E. & Smith, G.R. Meiotic DNA double-strand break repair requires two nucleases, MRN and Ctp1, to produce a single size class of Rec12 (Spo11)-oligonucleotide complexes. Mol. Cell. Biol. 29, 5998–6005 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  42. Hartsuiker, E. et al. Ctp1CtIP and Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol. Cell. Biol. 29, 1671–1681 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  43. Rothenberg, M., Kohli, J. & Ludin, K. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast. PLoS Genet. 5, e1000722 (2009).
    Article PubMed PubMed Central Google Scholar
  44. Hartsuiker, E., Neale, M.J. & Carr, A.M. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol. Cell 33, 117–123 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  45. Buis, J. et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135, 85–96 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  46. Lisby, M., Barlow, J.H., Burgess, R.C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).
    Article CAS PubMed Google Scholar
  47. Lee, K., Zhang, Y. & Lee, S.E. Saccharomyces cerevisiae ATM ortholog suppresses break-induced chromosome translocations. Nature 454, 543–546 (2008).
    Article CAS PubMed Google Scholar
  48. Bhaskara, V. et al. Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol. Cell 25, 647–661 (2007).
    Article CAS PubMed PubMed Central Google Scholar

Download references