KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response (original) (raw)
Yunis, J.J. & Yasmineh, W.G. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science174, 1200–1209 (1971). ArticleCAS Google Scholar
Miklos, G.L. & John, B. Heterochromatin and satellite DNA in man: properties and prospects. Am. J. Hum. Genet.31, 264–280 (1979). CASPubMedPubMed Central Google Scholar
Craig, J.M. Heterochromatin—many flavours, common themes. Bioessays27, 17–28 (2005). ArticleCAS Google Scholar
Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet.8, 35–46 (2007). ArticleCAS Google Scholar
Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem.71, 247–273 (2002). ArticleCAS Google Scholar
Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol.6, 838–849 (2005). ArticleCAS Google Scholar
Hediger, F. & Gasser, S.M. Heterochromatin protein 1: don't judge the book by its cover! Curr. Opin. Genet. Dev.16, 143–150 (2006). ArticleCAS Google Scholar
Denslow, S.A. & Wade, P.A. The human Mi-2/NuRD complex and gene regulation. Oncogene26, 5433–5438 (2007). ArticleCAS Google Scholar
Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol.166, 493–505 (2004). ArticleCAS Google Scholar
Downs, J.A., Nussenzweig, M.C. & Nussenzweig, A. Chromatin dynamics and the preservation of genetic information. Nature447, 951–958 (2007). ArticleCAS Google Scholar
Falk, M., Lukasova, E. & Kozubek, S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res.704, 88–100 (2010). ArticleCAS Google Scholar
Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J.E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol.178, 209–218 (2007). ArticleCAS Google Scholar
Cowell, I.G. et al. γH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE2, e1057 (2007). Article Google Scholar
Goodarzi, A.A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell31, 167–177 (2008). ArticleCAS Google Scholar
Goodarzi, A.A., Jeggo, P. & Lobrich, M. The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax. DNA Repair (Amst.)9, 1273–1282 (2010). ArticleCAS Google Scholar
Ayoub, N., Jeyasekharan, A.D. & Venkitaraman, A.R. Mobilization and recruitment of HP1: a bimodal response to DNA breakage. Cell Cycle8, 2945–2950 (2009). PubMed Google Scholar
Dinant, C. & Luijsterburg, M.S. The emerging role of HP1 in the DNA damage response. Mol. Cell. Biol.29, 6335–6340 (2009). ArticleCAS Google Scholar
Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol.8, 870–876 (2006). ArticleCAS Google Scholar
Noon, A.T. et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat. Cell Biol.12, 177–184 (2010). ArticleCAS Google Scholar
Tjeertes, J.V., Miller, K.M. & Jackson, S.P. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J.28, 1878–1889 (2009). ArticleCAS Google Scholar
Lee, Y.K., Thomas, S.N., Yang, A.J. & Ann, D.K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J. Biol. Chem.282, 1595–1606 (2007). ArticleCAS Google Scholar
Li, X. et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J. Biol. Chem.282, 36177–36189 (2007). ArticleCAS Google Scholar
Ivanov, A.V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell28, 823–837 (2007). ArticleCAS Google Scholar
Löbrich, M. et al. γH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle9, 662–669 (2010). Article Google Scholar
Schultz, D.C., Friedman, J.R. & Rauscher, F.J. III . Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev.15, 428–443 (2001). ArticleCAS Google Scholar
Polo, S.E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S.P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J.29, 3130–3139 (2010). ArticleCAS Google Scholar
Smeenk, G. et al. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol.190, 741–749 (2010). ArticleCAS Google Scholar
Larsen, D.H. et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J. Cell Biol.190, 731–740 (2010). ArticleCAS Google Scholar
Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell16, 715–724 (2004). ArticleCAS Google Scholar
Kerscher, O. SUMO junction—what's your function? New insights through SUMO-interacting motifs. EMBO Rep.8, 550–555 (2007). ArticleCAS Google Scholar
Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem.281, 16117–16127 (2006). ArticleCAS Google Scholar
Stehmeier, P. & Muller, S. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol. Cell33, 400–409 (2009). ArticleCAS Google Scholar
Miller, K.M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol. Biol.17, 1144–1151 (2010). ArticleCAS Google Scholar
Saether, T. et al. The chromatin remodeling factor Mi-2α acts as a novel co-activator for human c-Myb. J. Biol. Chem.282, 13994–14005 (2007). ArticleCAS Google Scholar
Seeler, J.S. et al. Common properties of nuclear body protein SP100 and TIF1α chromatin factor: role of SUMO modification. Mol. Cell. Biol.21, 3314–3324 (2001). ArticleCAS Google Scholar
Goodarzi, A.A. et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J.25, 3880–3889 (2006). ArticleCAS Google Scholar