ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit (original) (raw)
References
Geerlings, T.H., Faber, A.W., Bister, M.D., Vos, J.C. & Raue, H.A. Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S pre-rRNA in Saccharomyces cerevisiae. J. Biol. Chem.278, 22537–22545 (2003). ArticleCAS Google Scholar
Vanrobays, E., Gelugne, J.P., Gleizes, P.E. & Caizergues-Ferrer, M. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol. Cell Biol.23, 2083–2095 (2003). ArticleCAS Google Scholar
Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J.22, 1370–1380 (2003). Article Google Scholar
Henras, A.K. et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol. Life Sci.65, 2334–2359 (2008). ArticleCAS Google Scholar
Fromont-Racine, M., Senger, B., Saveanu, C. & Fasiolo, F. Ribosome assembly in eukaryotes. Gene313, 17–42 (2003). ArticleCAS Google Scholar
Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol.185, 1167–1180 (2009). ArticleCAS Google Scholar
Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J.29, 2026–2036 (2010). ArticleCAS Google Scholar
Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science333, 1449–1453 (2011). ArticleCAS Google Scholar
LaRonde-LeBlanc, N., Guszczynski, T., Copeland, T. & Wlodawer, A. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes. FEBS J.272, 2800–2810 (2005). ArticleCAS Google Scholar
LaRonde-LeBlanc, N. & Wlodawer, A. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. Structure12, 1585–1594 (2004). ArticleCAS Google Scholar
Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell146, 277–289 (2011). ArticleCAS Google Scholar
Post, R.L. & Kume, S. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem.248, 6993–7000 (1973). CASPubMed Google Scholar
Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol.5, 282–295 (2004). Article Google Scholar
Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science241, 42–52 (1988). ArticleCAS Google Scholar
Taylor, S.S. & Kornev, A.P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci.36, 65–77 (2011). ArticleCAS Google Scholar
Sanders, D.A., Gillece-Castro, B.L., Stock, A.M., Burlingame, A.L. & Koshland, D.E. Jr. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem.264, 21770–21778 (1989). CASPubMed Google Scholar
Collet, J.F., Stroobant, V., Pirard, M., Delpierre, G. & Van Schaftingen, E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J. Biol. Chem.273, 14107–14112 (1998). ArticleCAS Google Scholar
Zheng, J. et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry32, 2154–2161 (1993). ArticleCAS Google Scholar
Parang, K. & Cole, P.A. Designing bisubstrate analog inhibitors for protein kinases. Pharmacol. Ther.93, 145–157 (2002). ArticleCAS Google Scholar
Schäfer, T. et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature441, 651–655 (2006). Article Google Scholar
Aaronson, R.P. & Blobel, G. On the attachment of the nuclear pore complex. J. Cell Biol.62, 746–754 (1974). ArticleCAS Google Scholar
Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem.26, 1781–1802 (2005). ArticleCAS Google Scholar
Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure16, 673–683 (2008). ArticleCAS Google Scholar
Bishop, A.C., Buzko, O. & Shokat, K.M. Magic bullets for protein kinases. Trends Cell Biol.11, 167–172 (2001). ArticleCAS Google Scholar
Palmgren, M.G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys.40, 243–266 (2011). ArticleCAS Google Scholar
Ye, Q., Crawley, S.W., Yang, Y., Cote, G.P. & Jia, Z. Crystal structure of the alpha-kinase domain of Dictyostelium myosin heavy chain kinase A. Sci. Signal.3, ra17 (2010). Article Google Scholar
Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell3, 629–638 (1999). ArticleCAS Google Scholar
Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell112, 859–871 (2003). ArticleCAS Google Scholar
Malakhova, M. et al. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Nat. Struct. Mol. Biol.15, 112–113 (2008). ArticleCAS Google Scholar
Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science334, 1524–1529 (2011). ArticleCAS Google Scholar
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast21, 947–962 (2004). ArticleCAS Google Scholar
Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). ArticleCAS Google Scholar
Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods24, 218–229 (2001). ArticleCAS Google Scholar
Peluso, P., Shan, S.O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry40, 15224–15233 (2001). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Delano, W. The Pymol molecular graphics system (Delano Scientific, 2002).
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph14, 33–38, 27–28 (1996). ArticleCAS Google Scholar