ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit (original) (raw)

References

  1. Geerlings, T.H., Faber, A.W., Bister, M.D., Vos, J.C. & Raue, H.A. Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S pre-rRNA in Saccharomyces cerevisiae. J. Biol. Chem. 278, 22537–22545 (2003).
    Article CAS Google Scholar
  2. Vanrobays, E., Gelugne, J.P., Gleizes, P.E. & Caizergues-Ferrer, M. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol. Cell Biol. 23, 2083–2095 (2003).
    Article CAS Google Scholar
  3. Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).
    Article Google Scholar
  4. Henras, A.K. et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol. Life Sci. 65, 2334–2359 (2008).
    Article CAS Google Scholar
  5. Fromont-Racine, M., Senger, B., Saveanu, C. & Fasiolo, F. Ribosome assembly in eukaryotes. Gene 313, 17–42 (2003).
    Article CAS Google Scholar
  6. Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167–1180 (2009).
    Article CAS Google Scholar
  7. Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J. 29, 2026–2036 (2010).
    Article CAS Google Scholar
  8. Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).
    Article CAS Google Scholar
  9. LaRonde-LeBlanc, N., Guszczynski, T., Copeland, T. & Wlodawer, A. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes. FEBS J. 272, 2800–2810 (2005).
    Article CAS Google Scholar
  10. LaRonde-LeBlanc, N. & Wlodawer, A. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. Structure 12, 1585–1594 (2004).
    Article CAS Google Scholar
  11. Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289 (2011).
    Article CAS Google Scholar
  12. Post, R.L. & Kume, S. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 248, 6993–7000 (1973).
    CAS PubMed Google Scholar
  13. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).
    Article Google Scholar
  14. Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).
    Article CAS Google Scholar
  15. Taylor, S.S. & Kornev, A.P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).
    Article CAS Google Scholar
  16. Sanders, D.A., Gillece-Castro, B.L., Stock, A.M., Burlingame, A.L. & Koshland, D.E. Jr. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264, 21770–21778 (1989).
    CAS PubMed Google Scholar
  17. Collet, J.F., Stroobant, V., Pirard, M., Delpierre, G. & Van Schaftingen, E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J. Biol. Chem. 273, 14107–14112 (1998).
    Article CAS Google Scholar
  18. Zheng, J. et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32, 2154–2161 (1993).
    Article CAS Google Scholar
  19. Parang, K. & Cole, P.A. Designing bisubstrate analog inhibitors for protein kinases. Pharmacol. Ther. 93, 145–157 (2002).
    Article CAS Google Scholar
  20. Schäfer, T. et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 441, 651–655 (2006).
    Article Google Scholar
  21. Aaronson, R.P. & Blobel, G. On the attachment of the nuclear pore complex. J. Cell Biol. 62, 746–754 (1974).
    Article CAS Google Scholar
  22. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
    Article CAS Google Scholar
  23. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).
    Article CAS Google Scholar
  24. Bishop, A.C., Buzko, O. & Shokat, K.M. Magic bullets for protein kinases. Trends Cell Biol. 11, 167–172 (2001).
    Article CAS Google Scholar
  25. Palmgren, M.G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).
    Article CAS Google Scholar
  26. Ye, Q., Crawley, S.W., Yang, Y., Cote, G.P. & Jia, Z. Crystal structure of the alpha-kinase domain of Dictyostelium myosin heavy chain kinase A. Sci. Signal. 3, ra17 (2010).
    Article Google Scholar
  27. Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).
    Article CAS Google Scholar
  28. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).
    Article CAS Google Scholar
  29. Malakhova, M. et al. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Nat. Struct. Mol. Biol. 15, 112–113 (2008).
    Article CAS Google Scholar
  30. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).
    Article CAS Google Scholar
  31. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).
    Article CAS Google Scholar
  32. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS Google Scholar
  33. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).
    Article CAS Google Scholar
  34. Peluso, P., Shan, S.O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001).
    Article CAS Google Scholar
  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS Google Scholar
  36. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
    Article CAS Google Scholar
  37. Delano, W. The Pymol molecular graphics system (Delano Scientific, 2002).
  38. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38, 27–28 (1996).
    Article CAS Google Scholar

Download references