A complex network of factors with overlapping affinities represses splicing through intronic elements (original) (raw)

References

  1. Wang, Z. & Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).
    Article CAS Google Scholar
  2. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).
    Article CAS Google Scholar
  3. Blencowe, B.J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).
    Article CAS Google Scholar
  4. Liu, H.X., Zhang, M. & Krainer, A.R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12, 1998–2012 (1998).
    Article CAS Google Scholar
  5. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).
    Article CAS Google Scholar
  6. Zhang, X.H. & Chasin, L.A. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 18, 1241–1250 (2004).
    Article CAS Google Scholar
  7. Wang, Z. et al. Systematic identification and analysis of exonic splicing silencers. Cell 119, 831–845 (2004).
    Article CAS Google Scholar
  8. Goren, A. et al. Comparative analysis identifies exonic splicing regulatory sequences–the complex definition of enhancers and silencers. Mol. Cell 22, 769–781 (2006).
    Article CAS Google Scholar
  9. Yu, Y. et al. Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition. Cell 135, 1224–1236 (2008).
    Article CAS Google Scholar
  10. Culler, S.J., Hoff, K.G., Voelker, R.B., Berglund, J.A. & Smolke, C.D. Functional selection and systematic analysis of intronic splicing elements identifies active sequence motifs and associated splicing factors. Nucleic Acids Res. 38, 5152–5165 (2010).
    Article CAS Google Scholar
  11. Sharma, S., Kohlstaedt, L.A., Damianov, A., Rio, D.C. & Black, D.L. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat. Struct. Mol. Biol. 15, 183–191 (2008).
    Article CAS Google Scholar
  12. Kashima, T., Rao, N. & Manley, J.L. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 104, 3426–3431 (2007).
    Article CAS Google Scholar
  13. Hui, J. et al. Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J. 24, 1988–1998 (2005).
    Article CAS Google Scholar
  14. Blanchette, M. & Chabot, B. Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization. EMBO J. 18, 1939–1952 (1999).
    Article CAS Google Scholar
  15. Kanopka, A., Muhlemann, O. & Akusjarvi, G. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381, 535–538 (1996).
    Article CAS Google Scholar
  16. Ibrahim, E.C., Schaal, T.D., Hertel, K.J., Reed, R. & Maniatis, T. Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc. Natl. Acad. Sci. USA 102, 5002–5007 (2005).
    Article CAS Google Scholar
  17. Shen, M. & Mattox, W. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position. Nucleic Acids Res. 40, 428–437 (2012).
    Article CAS Google Scholar
  18. McNally, L.M. & McNally, M.T. SR protein splicing factors interact with the Rous sarcoma virus negative regulator of splicing element. J. Virol. 70, 1163–1172 (1996).
    CAS PubMed PubMed Central Google Scholar
  19. Del Gatto-Konczak, F., Olive, M., Gesnel, M.C. & Breathnach, R. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol. Cell Biol. 19, 251–260 (1999).
    Article CAS Google Scholar
  20. Hua, Y., Vickers, T.A., Okunola, H.L., Bennett, C.F. & Krainer, A.R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).
    Article CAS Google Scholar
  21. Tange, T.O., Damgaard, C.K., Guth, S., Valcarcel, J. & Kjems, J. The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J. 20, 5748–5758 (2001).
    Article CAS Google Scholar
  22. Wang, Y., Ma, M., Xiao, X. & Wang, Z. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat. Struct. Mol. Biol. 19, 1044–1052 (2012).
    Article CAS Google Scholar
  23. Wang, Z., Xiao, X., Van Nostrand, E. & Burge, C.B. General and specific functions of exonic splicing silencers in splicing control. Mol. Cell 23, 61–70 (2006).
    Article CAS Google Scholar
  24. Lim, K.H., Ferraris, L., Filloux, M.E., Raphael, B.J. & Fairbrother, W.G. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc. Natl. Acad. Sci. USA 108, 11093–11098 (2011).
    Article CAS Google Scholar
  25. Huang, C. et al. A structured RNA in HBV PRE represses alternative splicing in a sequence-independent and position-dependent manner. FEBS J. 278, 1533–1546 (2011).
    Article CAS Google Scholar
  26. Pervouchine, D.D. et al. Evidence for widespread association of mammalian splicing and conserved long-range RNA structures. RNA 18, 1–15 (2012).
    Article CAS Google Scholar
  27. Dominski, Z., Yang, X.C., Kaygun, H., Dadlez, M. & Marzluff, W.F. A 3′ exonuclease that specifically interacts with the 3′ end of histone mRNA. Mol. Cell 12, 295–305 (2003).
    Article CAS Google Scholar
  28. Rothrock, C.R., House, A.E. & Lynch, K.W. HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO J. 24, 2792–2802 (2005).
    Article CAS Google Scholar
  29. Nielsen, F.C., Nielsen, J. & Christiansen, J. A family of IGF-II mRNA binding proteins (IMP) involved in RNA trafficking. Scand. J. Clin. Lab. Invest. Suppl. 234, 93–99 (2001).
    Article CAS Google Scholar
  30. Allemand, E., Hastings, M.L., Murray, M.V., Myers, M.P. & Krainer, A.R. Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1. Nat. Struct. Mol. Biol. 14, 630–638 (2007).
    Article CAS Google Scholar
  31. Krainer, A.R., Conway, G.C. & Kozak, D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 4, 1158–1171 (1990).
    Article CAS Google Scholar
  32. Muta, T., Kang, D., Kitajima, S., Fujiwara, T. & Hamasaki, N. p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J. Biol. Chem. 272, 24363–24370 (1997).
    Article CAS Google Scholar
  33. Oberstrass, F.C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).
    Article CAS Google Scholar
  34. Spellman, R., Llorian, M. & Smith, C.W. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007).
    Article CAS Google Scholar
  35. Jin, W., Bruno, I.G., Xie, T.X., Sanger, L.J. & Cote, G.J. Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1 α-exon inclusion. Cancer Res. 63, 6154–6157 (2003).
    CAS PubMed Google Scholar
  36. Côté, J., Dupuis, S. & Wu, J.Y. Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion. J. Biol. Chem. 276, 8535–8543 (2001).
    Article Google Scholar
  37. Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007).
    Article CAS Google Scholar
  38. Chou, M.Y., Rooke, N., Turck, C.W. & Black, D.L. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol. Cell Biol. 19, 69–77 (1999).
    Article CAS Google Scholar
  39. Kashima, T., Rao, N., David, C.J. & Manley, J.L. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum. Mol. Genet. 16, 3149–3159 (2007).
    Article CAS Google Scholar
  40. Hui, J., Stangl, K., Lane, W.S. & Bindereif, A. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat. Struct. Biol. 10, 33–37 (2003).
    Article CAS Google Scholar
  41. Chen, M. & Manley, J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).
    Article CAS Google Scholar
  42. Graveley, B.R. & Maniatis, T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell 1, 765–771 (1998).
    Article CAS Google Scholar
  43. Shen, H., Kan, J.L. & Green, M.R. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol. Cell 13, 367–376 (2004).
    Article CAS Google Scholar
  44. Graveley, B.R., Hertel, K.J. & Maniatis, T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17, 6747–6756 (1998).
    Article CAS Google Scholar
  45. Wang, Y., Cheong, C.G., Hall, T.M. & Wang, Z. Engineering splicing factors with designed specificities. Nat. Methods 6, 825–830 (2009).
    Article CAS Google Scholar
  46. Cheong, C.G. & Hall, T.M. Engineering RNA sequence specificity of Pumilio repeats. Proc. Natl. Acad. Sci. USA 103, 13635–13639 (2006).
    Article CAS Google Scholar
  47. Tourrière, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823–831 (2003).
    Article Google Scholar
  48. Ufer, C. et al. Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev. 22, 1838–1850 (2008).
    Article CAS Google Scholar
  49. Michlewski, G., Guil, S., Semple, C.A. & Caceres, J.F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008).
    Article CAS Google Scholar
  50. Guil, S., Long, J.C. & Caceres, J.F. hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol. Cell Biol. 26, 5744–5758 (2006).
    Article CAS Google Scholar
  51. Boutz, P.L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).
    Article CAS Google Scholar
  52. Caputi, M. & Zahler, A.M. Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H'/F/2H9 family. J. Biol. Chem. 276, 43850–43859 (2001).
    Article CAS Google Scholar
  53. Schaub, M.C., Lopez, S.R. & Caputi, M. Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J. Biol. Chem. 282, 13617–13626 (2007).
    Article CAS Google Scholar
  54. Chen, C.D., Kobayashi, R. & Helfman, D.M. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev. 13, 593–606 (1999).
    Article CAS Google Scholar
  55. Xiao, X., Wang, Z., Jang, M. & Burge, C.B. Coevolutionary networks of splicing cis-regulatory elements. Proc. Natl. Acad. Sci. USA 104, 18583–18588 (2007).
    Article CAS Google Scholar
  56. Xiao, X. et al. Splice site strength-dependent activity and genetic buffering by poly-G runs. Nat. Struct. Mol. Biol. 16, 1094–1100 (2009).
    Article CAS Google Scholar
  57. Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).
    Article CAS Google Scholar

Download references