A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry (original) (raw)
References
Zanetti, G., Pahuja, K.B., Studer, S., Shim, S. & Schekman, R. COPII and the regulation of protein sorting in mammals. Nat. Cell Biol.14, 20–28 (2011). Article Google Scholar
Lee, M.C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell122, 605–617 (2005). ArticleCAS Google Scholar
Stagg, S.M. et al. Structure of the Sec13/31 COPII coat cage. Nature439, 234–238 (2006). ArticleCAS Google Scholar
Fath, S., Mancias, J.D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell129, 1325–1336 (2007). ArticleCAS Google Scholar
Bacia, K. et al. Multibudded tubules formed by COPII on artificial liposomes. Sci Rep1, 17 (2011). Article Google Scholar
Elrod-Erickson, M.J. & Kaiser, C.A. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol. Biol. Cell7, 1043–1058 (1996). ArticleCAS Google Scholar
Copic, A., Latham, C.F., Horlbeck, M.A., D'Arcangelo, J.G. & Miller, E.A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science335, 1359–1362 (2012). ArticleCAS Google Scholar
Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature482, 495–500 (2012). ArticleCAS Google Scholar
Engen, J.R. Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem.81, 7870–7875 (2009). ArticleCAS Google Scholar
Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods5, 53–55 (2008). ArticleCAS Google Scholar
Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol.128, 82–97 (1999). ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). CAS Google Scholar
Stagg, S.M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell134, 474–484 (2008). ArticleCAS Google Scholar
Eswar, N. et al. Comparative protein structure modeling using MODELLER. in Curr. Protoc. Protein Sci. Ch. 2, 2.9.1–2.9.31 (Wiley, 2007).
Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure16, 673–683 (2008). ArticleCAS Google Scholar
Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev.17, 1–35 (1998). ArticleCAS Google Scholar
Chalmers, M.J. et al. Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem.78, 1005–1014 (2006). ArticleCAS Google Scholar
Zhang, Q. et al. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.83, 7129–7136 (2011). ArticleCAS Google Scholar
Zhang, H.M., Bou-Assaf, G.M., Emmett, M.R. & Marshall, A.G. Fast reversed-phase liquid chromatography to reduce back exchange and increase throughput in H/D exchange monitored by FT-ICR mass spectrometry. J. Am. Soc. Mass Spectrom.20, 520–524 (2009). ArticleCAS Google Scholar
Cravello, L., Lascoux, D. & Forest, E. Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun. Mass Spectrom.17, 2387–2393 (2003). ArticleCAS Google Scholar
Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. USA105, 1867–1872 (2008). ArticleCAS Google Scholar
Weis, D.D., Engen, J. & Kass, I. Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J. Am. Soc. Mass Spectrom.17, 1700–1703 (2006). ArticleCAS Google Scholar
Pascal, B.D., Chalmers, M.J., Busby, S.A. & Griffin, P.R.H.D. Desktop: an integrated platform for the analysis and visualization of H/D exchange data. J. Am. Soc. Mass Spectrom.20, 601–610 (2009). ArticleCAS Google Scholar
Kazazic, S. et al. Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom.21, 550–558 (2010). ArticleCAS Google Scholar
Zhang, Z., Zhang, A. & Xiao, G. Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing. Anal. Chem.84, 4942–4949 (2012). ArticleCAS Google Scholar
Schaub, T.M. et al. High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal. Chem.80, 3985–3990 (2008). ArticleCAS Google Scholar
Bi, X., Mancias, J.D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell13, 635–645 (2007). ArticleCAS Google Scholar
Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science322, 1369–1373 (2008). ArticleCAS Google Scholar
Whittle, J.R.R. & Schwartz, T.U. Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J. Cell Biol.190, 347–361 (2010). ArticleCAS Google Scholar
Bhattacharya, N., Donnell, O.J. & Stagg, S.M. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol.420, 324–334 (2012). ArticleCAS Google Scholar
Lederkremer, G.Z. et al. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc. Natl. Acad. Sci. USA98, 10704–10709 (2001). ArticleCAS Google Scholar
O'Donnell, J., Maddox, K. & Stagg, S. The structure of a COPII tubule. J. Struct. Biol.173, 358–364 (2011). ArticleCAS Google Scholar
Coombs, D.H. & Watts, N.R. Generating sucrose gradients in three minutes by tilted tube rotation. Anal. Biochem.148, 254–259 (1985). ArticleCAS Google Scholar
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol.151, 41–60 (2005). ArticleCAS Google Scholar
Lander, G.C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol.166, 95–102 (2009). ArticleCAS Google Scholar
Scheres, S.H.W., Núñez-Ramírez, R., Sorzano, C.O.S., Carazo, J.M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc.3, 977–990 (2008). ArticleCAS Google Scholar
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539 (2011). Article Google Scholar
Wilcox, B.E., Hendrickson, C. & Marshall, A. Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom.13, 1304–1312 (2002). ArticleCAS Google Scholar
Beu, S.C. & Laude, D.A. Elimination of axial ejection during excitation with a capacitively coupled open trapped-ion cell for Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.64, 177–180 (1992). ArticleCAS Google Scholar
Schwartz, J.C., Senko, M. & Syka, J. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom.13, 659–669 (2002). ArticleCAS Google Scholar
Marshall, A.G. & Guan, S. Advantages of high magnetic field for Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom.10, 1819–1823 (1996). ArticleCAS Google Scholar