A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry (original) (raw)

References

  1. Zanetti, G., Pahuja, K.B., Studer, S., Shim, S. & Schekman, R. COPII and the regulation of protein sorting in mammals. Nat. Cell Biol. 14, 20–28 (2011).
    Article Google Scholar
  2. Lee, M.C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).
    Article CAS Google Scholar
  3. Stagg, S.M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).
    Article CAS Google Scholar
  4. Fath, S., Mancias, J.D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).
    Article CAS Google Scholar
  5. Bacia, K. et al. Multibudded tubules formed by COPII on artificial liposomes. Sci Rep 1, 17 (2011).
    Article Google Scholar
  6. Elrod-Erickson, M.J. & Kaiser, C.A. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol. Biol. Cell 7, 1043–1058 (1996).
    Article CAS Google Scholar
  7. Copic, A., Latham, C.F., Horlbeck, M.A., D'Arcangelo, J.G. & Miller, E.A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335, 1359–1362 (2012).
    Article CAS Google Scholar
  8. Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012).
    Article CAS Google Scholar
  9. Engen, J.R. Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 81, 7870–7875 (2009).
    Article CAS Google Scholar
  10. Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).
    Article CAS Google Scholar
  11. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).
    Article CAS Google Scholar
  12. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
    CAS Google Scholar
  13. Stagg, S.M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484 (2008).
    Article CAS Google Scholar
  14. Eswar, N. et al. Comparative protein structure modeling using MODELLER. in Curr. Protoc. Protein Sci. Ch. 2, 2.9.1–2.9.31 (Wiley, 2007).
  15. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).
    Article CAS Google Scholar
  16. Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).
    Article CAS Google Scholar
  17. Chalmers, M.J. et al. Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 78, 1005–1014 (2006).
    Article CAS Google Scholar
  18. Zhang, Q. et al. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 83, 7129–7136 (2011).
    Article CAS Google Scholar
  19. Zhang, H.M., Bou-Assaf, G.M., Emmett, M.R. & Marshall, A.G. Fast reversed-phase liquid chromatography to reduce back exchange and increase throughput in H/D exchange monitored by FT-ICR mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 520–524 (2009).
    Article CAS Google Scholar
  20. Cravello, L., Lascoux, D. & Forest, E. Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun. Mass Spectrom. 17, 2387–2393 (2003).
    Article CAS Google Scholar
  21. Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. USA 105, 1867–1872 (2008).
    Article CAS Google Scholar
  22. Weis, D.D., Engen, J. & Kass, I. Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J. Am. Soc. Mass Spectrom. 17, 1700–1703 (2006).
    Article CAS Google Scholar
  23. Pascal, B.D., Chalmers, M.J., Busby, S.A. & Griffin, P.R.H.D. Desktop: an integrated platform for the analysis and visualization of H/D exchange data. J. Am. Soc. Mass Spectrom. 20, 601–610 (2009).
    Article CAS Google Scholar
  24. Kazazic, S. et al. Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 550–558 (2010).
    Article CAS Google Scholar
  25. Zhang, Z., Zhang, A. & Xiao, G. Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing. Anal. Chem. 84, 4942–4949 (2012).
    Article CAS Google Scholar
  26. Schaub, T.M. et al. High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal. Chem. 80, 3985–3990 (2008).
    Article CAS Google Scholar
  27. Bi, X., Mancias, J.D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell 13, 635–645 (2007).
    Article CAS Google Scholar
  28. Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322, 1369–1373 (2008).
    Article CAS Google Scholar
  29. Whittle, J.R.R. & Schwartz, T.U. Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J. Cell Biol. 190, 347–361 (2010).
    Article CAS Google Scholar
  30. Bhattacharya, N., Donnell, O.J. & Stagg, S.M. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 420, 324–334 (2012).
    Article CAS Google Scholar
  31. Lederkremer, G.Z. et al. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc. Natl. Acad. Sci. USA 98, 10704–10709 (2001).
    Article CAS Google Scholar
  32. O'Donnell, J., Maddox, K. & Stagg, S. The structure of a COPII tubule. J. Struct. Biol. 173, 358–364 (2011).
    Article CAS Google Scholar
  33. Coombs, D.H. & Watts, N.R. Generating sucrose gradients in three minutes by tilted tube rotation. Anal. Biochem. 148, 254–259 (1985).
    Article CAS Google Scholar
  34. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
    Article CAS Google Scholar
  35. Lander, G.C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).
    Article CAS Google Scholar
  36. Mallick, S.P., Carragher, B., Potter, C.S. & Kriegman, D.J. ACE: automated CTF estimation. Ultramicroscopy 104, 8–29 (2005).
    Article CAS Google Scholar
  37. Scheres, S.H.W., Núñez-Ramírez, R., Sorzano, C.O.S., Carazo, J.M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008).
    Article CAS Google Scholar
  38. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
    Article Google Scholar
  39. Wilcox, B.E., Hendrickson, C. & Marshall, A. Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom. 13, 1304–1312 (2002).
    Article CAS Google Scholar
  40. Beu, S.C. & Laude, D.A. Elimination of axial ejection during excitation with a capacitively coupled open trapped-ion cell for Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 64, 177–180 (1992).
    Article CAS Google Scholar
  41. Schwartz, J.C., Senko, M. & Syka, J. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002).
    Article CAS Google Scholar
  42. Marshall, A.G. & Guan, S. Advantages of high magnetic field for Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1819–1823 (1996).
    Article CAS Google Scholar

Download references