Xi, H. et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet.3, e136 (2007). ArticlePubMedPubMed Central Google Scholar
Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods6, 283–289 (2009). ArticleCASPubMedPubMed Central Google Scholar
Narlikar, G.J., Phelan, M.L. & Kingston, R.E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell8, 1219–1230 (2001). ArticleCASPubMed Google Scholar
Rippe, K. et al. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. USA104, 15635–15640 (2007). ArticleCASPubMedPubMed Central Google Scholar
Blosser, T.R., Yang, J.G., Stone, M.D., Narlikar, G.J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature462, 1022–1027 (2009). ArticleCASPubMedPubMed Central Google Scholar
van Vugt, J.J. et al. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS ONE4, e6345 (2009). ArticlePubMedPubMed Central Google Scholar
Boyer, L.A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem.275, 18864–18870 (2000). ArticleCASPubMed Google Scholar
Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell103, 667–678 (2000). ArticleCASPubMed Google Scholar
Alenghat, T., Yu, J. & Lazar, M.A. The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor. EMBO J.25, 3966–3974 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hogan, C. & Varga-Weisz, P. The regulation of ATP-dependent nucleosome remodelling factors. Mutat. Res.618, 41–51 (2007). ArticleCASPubMed Google Scholar
Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl. Acad. Sci. USA106, 5187–5191 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schnetz, M.P. et al. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet.6, e1001023 (2010). ArticlePubMedPubMed Central Google Scholar
Sala, A. et al. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J.30, 1766–1777 (2011). ArticleCASPubMedPubMed Central Google Scholar
Clapier, C.R. & Cairns, B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem.78, 273–304 (2009). ArticleCASPubMed Google Scholar
Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res.36, 5221–5231 (2008). ArticleCASPubMedPubMed Central Google Scholar
Boyle, A.P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res.21, 456–464 (2011). ArticleCASPubMedPubMed Central Google Scholar
Peterson, C.L. & Workman, J.L. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev.10, 187–192 (2000). ArticleCASPubMed Google Scholar
Goldmark, J.P., Fazzio, T.G., Estep, P.W., Church, G.M. & Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell103, 423–433 (2000). ArticleCASPubMed Google Scholar
Schultz, D.C., Friedman, J.R. & Rauscher, F.J. III. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev.15, 428–443 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bailey, T.L., Williams, N., Misleh, C. & Li, W.W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res.34, W369–W373 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rao, M. et al. Inhibition of cyclin D1 gene transcription by Brg-1. Cell Cycle7, 647–655 (2008). ArticleCASPubMed Google Scholar
Biddie, S.C. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell43, 145–155 (2011). ArticleCASPubMedPubMed Central Google Scholar
Biddie, S.C., John, S. & Hager, G.L. Genome-wide mechanisms of nuclear receptor action. Trends Endocrinol. Metab.21, 3–9 (2010). ArticleCASPubMed Google Scholar
Ishihara, K., Oshimura, M. & Nakao, M. CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell23, 733–742 (2006). ArticleCASPubMed Google Scholar
Richmond, E. & Peterson, C.L. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res.24, 3685–3692 (1996). ArticleCASPubMedPubMed Central Google Scholar
Corona, D.F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell3, 239–245 (1999). ArticleCASPubMed Google Scholar
de la Serna, I.L., Carlson, K.A. & Imbalzano, A.N. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat. Genet.27, 187–190 (2001). ArticleCASPubMed Google Scholar
Hakimi, M.A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature418, 994–998 (2002). ArticleCASPubMed Google Scholar
Dirscherl, S.S., Henry, J.J. & Krebs, J.E. Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis. Mech. Dev.122, 1157–1170 (2005). ArticleCASPubMed Google Scholar
Srinivasan, R., Mager, G.M., Ward, R.M., Mayer, J. & Svaren, J. NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J. Biol. Chem.281, 15129–15137 (2006). ArticleCASPubMed Google Scholar
Schnitzler, G., Sif, S. & Kingston, R.E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell94, 17–27 (1998). ArticleCASPubMed Google Scholar
Moshkin, Y.M. et al. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner. Mol. Cell. Biol.32, 675–688 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science333, 1758–1760 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yen, K., Vinayachandran, V., Batta, K., Koerber, R.T. & Pugh, B.F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell149, 1461–1473 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev.20, 282–296 (2006). CASPubMedPubMed Central Google Scholar
Gao, H. et al. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc. Natl. Acad. Sci. USA106, 11258–11263 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell147, 1498–1510 (2011). ArticleCASPubMedPubMed Central Google Scholar
Curtis, C.D. & Griffin, C.T. The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling. Mol. Cell. Biol.32, 1312–1320 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kassabov, S.R., Henry, N.M., Zofall, M., Tsukiyama, T. & Bartholomew, B. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol. Cell. Biol.22, 7524–7534 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nagaich, A.K., Walker, D.A., Wolford, R.G. & Hager, G.L. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol. Cell14, 163–174 (2004). ArticleCASPubMed Google Scholar
Boeger, H., Griesenbeck, J. & Kornberg, R.D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell133, 716–726 (2008). ArticleCASPubMedPubMed Central Google Scholar
Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell14, 667–673 (2004). ArticleCASPubMed Google Scholar
Johnson, T.A., Elbi, C., Parekh, B.S., Hager, G.L. & John, S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor regulated promoter. Mol. Biol. Cell19, 3308–3322 (2008). ArticleCASPubMedPubMed Central Google Scholar
McKnight, J.N., Jenkins, K.R., Nodelman, I.M., Escobar, T. & Bowman, G.D. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell. Biol.31, 4746–4759 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rigaud, G., Roux, J., Pictet, R. & Grange, T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell67, 977–986 (1991). ArticleCASPubMed Google Scholar
Voss, T.C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell146, 544–554 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell6, 1287–1295 (2000). ArticleCASPubMed Google Scholar
Siatecka, M., Xue, L. & Bieker, J.J. Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol. Cell. Biol.27, 8547–8560 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hsiao, P.W., Fryer, C.J., Trotter, K.W., Wang, W. & Archer, T.K. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol. Cell. Biol.23, 6210–6220 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sims, R.J. III et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem.280, 41789–41792 (2005). ArticleCASPubMed Google Scholar
Hassan, A.H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell111, 369–379 (2002). ArticleCASPubMed Google Scholar
Fragoso, G., Pennie, W.D., John, S. & Hager, G.L. The position and length of the steroid-dependent hypersensitive region in the mouse mammary tumor virus long terminal repeat are invariant despite multiple nucleosome B frames. Mol. Cell. Biol.18, 3633–3644 (1998). ArticleCASPubMedPubMed Central Google Scholar
Voss, T.C. et al. Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity. J. Cell Sci.122, 345–356 (2009). ArticleCASPubMedPubMed Central Google Scholar
John, S. et al. Interaction of the glucocorticoid receptor with the global chromatin landscape. Mol. Cell29, 611–624 (2008). ArticleCASPubMed Google Scholar
Siersbæk, R. et al. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J.30, 1459–1472 (2011). ArticlePubMedPubMed Central Google Scholar
Bailey, T.L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics14, 48–54 (1998). ArticleCASPubMed Google Scholar