Competition between Grb2 and Plcγ1 for FGFR2 regulates basal phospholipase activity and invasion (original) (raw)
Lin, C.-C. et al. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell149, 1514–1524 (2012). ArticleCASPubMed Google Scholar
Ahmed, Z. et al. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. J. Cell Biol.200, 493–504 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lymn, J.S., Hughes, A.D. & Phospholipase, C. Isoforms, cytoskeletal organization, and vascular smooth muscle differentiation. News Physiol. Sci.15, 41–45 (2000). CASPubMed Google Scholar
Logan, M.R. & Mandato, C.A. Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol. Cell98, 377–388 (2006). ArticleCASPubMed Google Scholar
Rebecchi, M.J. & Pentyala, S.N. Structure, function and control of phosphoinositide-specific phospholipase C. Physiol. Rev.80, 1291–1335 (2000). ArticleCASPubMed Google Scholar
Kölsch, V., Charest, P.G. & Firtel, R.A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci.121, 551–559 (2008). ArticlePubMed Google Scholar
Hao, J.J. et al. Phospholipase C–mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J. Cell Biol.184, 451–462 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sala, G. et al. Phospholipase Cγ1 is required for metastasis development and progression. Cancer Res.68, 10187–10196 (2008). ArticleCASPubMed Google Scholar
Mohammadi, M. et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol. Cell. Biol.11, 5068–5078 (1991). ArticleCASPubMedPubMed Central Google Scholar
Peters, K.G. et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature358, 678–681 (1992). ArticleCASPubMed Google Scholar
Bae, J.H. et al. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell138, 514–524 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, H.K. et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell65, 435–441 (1991). ArticleCASPubMed Google Scholar
Serrano, C.J. et al. A new tyrosine phosphorylation site in PLCγ1: the role of tyrosine 775 in immune receptor signaling. J. Immunol.174, 6233–6237 (2005). ArticleCASPubMed Google Scholar
Harden, T.K. & Sondek, J. Regulation of phospholipase C isozymes by ras superfamily GTPases. Annu. Rev. Pharmacol. Toxicol.46, 355–379 (2006). ArticleCASPubMed Google Scholar
Gresset, A., Hicks, S.N., Harden, T.K. & Sondek, J. Mechanism of phosphorylation-induced activation of phospholipase C-γ isozymes. J. Biol. Chem.285, 35836–35847 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bunney, T.D. et al. Structural and functional integration of the PLCγ interaction domains critical for regulatory mechanisms and signaling deregulation. Structure20, 2062–2075 (2012). ArticleCASPubMedPubMed Central Google Scholar
Falasca, M. et al. Activation of phospholipase Cγ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J.17, 414–422 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rhee, S.G. Inositol phospholipids-specific phospholipase C: interaction of the gamma 1 isoform with tyrosine kinase. Trends Biochem. Sci.16, 297–301 (1991). ArticleCASPubMed Google Scholar
Yu, H., Kiyoko, F., Toshiki, I. & Tadaomi, T. Phosphorylation of phospholipase Cγ1 on tyrosine residue 783 by platelet-derived growth factor regulates reorganization of the cytoskeleton. Exp. Cell Res.243, 113–122 (1998). ArticleCASPubMed Google Scholar
Cha, J.Y., Lambert, Q.T., Reuther, G.W. & Der, C.J. Involvement of fibroblast growth factor receptor 2 isoform switching in mammary oncogenesis. Mol. Cancer Res.6, 435–445 (2008). ArticleCASPubMed Google Scholar
Cha, J.Y., Maddileti, S., Mitin, N., Harden, T.K. & Der, C.J. Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J. Biol. Chem.284, 6227–6240 (2009). ArticleCASPubMedPubMed Central Google Scholar
Itoh, H. et al. Preferential alternative splicing in cancer generates a K-sam messenger RNA with higher transforming activity. Cancer Res.54, 3237–3241 (1994). CASPubMed Google Scholar
Hattori, Y. et al. Immunohistochemical detection of K-sam protein in stomach cancer. Clin. Cancer Res.2, 1373–1381 (1996). CASPubMed Google Scholar
Ishii, H., Yoshida, T., Oh, H., Yoshida, S. & Terada, M. A truncated K-sam product lacking the distal carboxyl-terminal portion provides a reduced level of autophosphorylation and greater resistance against induction of differentiation. Mol. Cell. Biol.15, 3664–3671 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ahmed, Z. et al. Direct binding of Grb2 SH3 domain to FGFR2 regulates SHP2 function. Cell. Signal.22, 23–33 (2010). ArticleCASPubMed Google Scholar
Thapa, N. & Anderson, R.A. PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells. Cell Adh. Migr.6, 409–412 (2012). ArticlePubMedPubMed Central Google Scholar
Matsuda, Y. et al. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer. Cancer Lett.309, 209–219 (2011). ArticleCASPubMed Google Scholar
Everett, K.L. et al. Membrane environment exerts an important influence on Rac-mediated activation of phospholipase Cγ2. Mol. Cell. Biol.31, 1240–1251 (2011). ArticleCASPubMedPubMed Central Google Scholar
Piechulek, T. et al. Isozyme-specific stimulation of phospholipase C-γ2 by Rac GTPases. J. Biol. Chem.280, 38923–38931 (2005). ArticleCASPubMed Google Scholar
Sekiya, F., Poulin, B., Kim, Y.J. & Rhee, S.G. Mechanism of tyrosine phosphorylation and activation of phospholipase C-γ2. J. Biol. Chem.279, 32181–32190 (2004). ArticleCASPubMed Google Scholar
Walliser, C. et al. Rac regulates its effector phospholipase Cγ2 through interaction with a split pleckstrin homology domain. J. Biol. Chem.283, 30351–30362 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bunney, T.D. et al. Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2. Mol. Cell34, 223–233 (2009). ArticleCASPubMed Google Scholar
Ahmed, Z., Schuller, A.C., Suhling, K., Tregidgo, C. & Ladbury, J.E. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem. J.413, 37–49 (2008). ArticleCASPubMed Google Scholar
Chilvers, E.R., Batty, I.H., Challiss, R.A., Barnes, P.J. & Nahorski, S.R. Determination of mass changes in phosphatidylinositol 4, 5-bisphosphate and evidence for agonist-stimulated metabolism of inositol 1, 4, 5-trisphosphate in airway smooth muscle. Biochem. J.275, 373–379 (1991). ArticleCASPubMedPubMed Central Google Scholar
Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37, 911–917 (1959). ArticleCASPubMed Google Scholar
König, S., Hoffmann, M., Mosblech, A. & Heilmann, I. Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin-layer chromatography and gas chromatography. Anal. Biochem.378, 197–201 (2008). ArticlePubMed Google Scholar
Jin, M. et al. Determinants of TRPV4 activity following selective activation by small molecule agonist GSK1016790A. PLoS ONE6, e16713 (2011). ArticleCASPubMedPubMed Central Google Scholar
Berrout, J. et al. Function of transient receptor potential cation channel subfamily V member 4 (TRPV4) as a mechanical transducer in flow-sensitive segments of renal collecting duct system. J. Biol. Chem.287, 8782–8791 (2012). ArticleCASPubMedPubMed Central Google Scholar
Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260, 3440–3450 (1985). CASPubMed Google Scholar