Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation (original) (raw)
Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature461, 542–545 (2009). ArticleCAS Google Scholar
Zhang, B.H. & Guan, K.L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J.19, 5429–5439 (2000). ArticleCAS Google Scholar
Chong, H., Lee, J. & Guan, K.L. Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J.20, 3716–3727 (2001). ArticleCAS Google Scholar
Freeman, A.K., Ritt, D.A. & Morrison, D.K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell49, 751–758 (2013). ArticleCAS Google Scholar
Wan, P.T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell116, 855–867 (2004). ArticleCAS Google Scholar
Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell140, 209–221 (2010). ArticleCAS Google Scholar
Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature464, 427–430 (2010). ArticleCAS Google Scholar
Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature464, 431–435 (2010). ArticleCAS Google Scholar
Garnett, M.J. & Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell6, 313–319 (2004). ArticleCAS Google Scholar
Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature502, 333–339 (2013). ArticleCAS Google Scholar
Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res.39, D945–D950 (2011). ArticleCAS Google Scholar
Zhang, X., Gureasko, J., Shen, K., Cole, P.A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell125, 1137–1149 (2006). ArticleCAS Google Scholar
Shi, F., Telesco, S.E., Liu, Y., Radhakrishnan, R. & Lemmon, M.A. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA107, 7692–7697 (2010). ArticleCAS Google Scholar
Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature376, 313–320 (1995). ArticleCAS Google Scholar
Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA105, 3041–3046 (2008). ArticleCAS Google Scholar
Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature467, 596–599 (2010). ArticleCAS Google Scholar
De Bondt, H.L. et al. Crystal structure of cyclin-dependent kinase 2. Nature363, 595–602 (1993). ArticleCAS Google Scholar
Kornev, A.P., Haste, N.M., Taylor, S.S. & Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA103, 17783–17788 (2006). ArticleCAS Google Scholar
Lavoie, H. et al. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nat. Chem. Biol.9, 428–436 (2013). ArticleCAS Google Scholar
Luo, Z. et al. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature383, 181–185 (1996). ArticleCAS Google Scholar
Weber, C.K., Slupsky, J.R., Kalmes, H.A. & Rapp, U.R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res.61, 3595–3598 (2001). CASPubMed Google Scholar
Röring, M. et al. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J.31, 2629–2647 (2012). Article Google Scholar
Poulikakos, P.I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature480, 387–390 (2011). ArticleCAS Google Scholar
Shan, Y. et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell149, 860–870 (2012). ArticleCAS Google Scholar
Arkhipov, A. et al. Architecture and membrane interactions of the EGF receptor. Cell152, 557–569 (2013). ArticleCAS Google Scholar
Endres, N.F. et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell152, 543–556 (2013). ArticleCAS Google Scholar
Tran, N.H., Wu, X. & Frost, J.A. B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J. Biol. Chem.280, 16244–16253 (2005). ArticleCAS Google Scholar
Chong, H. & Guan, K.L. Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J. Biol. Chem.278, 36269–36276 (2003). ArticleCAS Google Scholar
Wenglowsky, S. et al. Pyrazolopyridine inhibitors of B-Raf(V600E). Part 1: the development of selective, orally bioavailable, and efficacious inhibitors. ACS Med. Chem. Lett.2, 342–347 (2011). ArticleCAS Google Scholar
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr.67, 293–302 (2011). ArticleCAS Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). ArticleCAS Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). ArticleCAS Google Scholar
Douziech, M. et al. Bimodal regulation of RAF by CNK in Drosophila. EMBO J.22, 5068–5078 (2003). ArticleCAS Google Scholar
McKay, M.M. & Morrison, D.K. Proteomic analysis of scaffold proteins in the ERK cascade. Methods Mol. Biol.661, 323–334 (2010). ArticleCAS Google Scholar