Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA (original) (raw)
References
Carter, C.W. Jr. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie77, 92–98 (1995). ArticleCASPubMed Google Scholar
Maas, S., Rich, A. & Nishikura, K. A-to-I RNA editing: recent news and residual mysteries. J. Biol. Chem.278, 1391–1394 (2003). ArticleCASPubMed Google Scholar
Pham, P., Bransteitter, R. & Goodman, M.F. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry44, 2703–2715 (2005). ArticleCASPubMed Google Scholar
Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet.19, 207–216 (2003). ArticleCASPubMed Google Scholar
Johansson, E., Mejlhede, N., Neuhard, J. & Larsen, S. Crystal structure of the tetrameric cytidine deaminase from Bacillus subtilis at 2.0 Å resolution. Biochemistry41, 2563–2570 (2002). ArticleCASPubMed Google Scholar
Wilson, D.K., Rudolph, F.B. & Quiocho, F.A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science252, 1278–1284 (1991). ArticleCASPubMed Google Scholar
Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem.71, 817–846 (2002). ArticleCASPubMed Google Scholar
Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature418, 99–103 (2002). ArticleCASPubMed Google Scholar
Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418, 646–650 (2002). CASPubMed Google Scholar
Teng, B., Burant, C.F. & Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science260, 1816–1819 (1993). ArticleCASPubMed Google Scholar
Wolf, J., Gerber, A.P. & Keller, W. TadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J.21, 3841–3851 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.26, 148–153 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gerber, A.P. & Keller, W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science286, 1146–1149 (1999). ArticleCASPubMed Google Scholar
Gerber, A., Grosjean, H., Melcher, T. & Keller, W. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. EMBO J.17, 4780–4789 (1998). ArticleCASPubMedPubMed Central Google Scholar
Grosjean, H. et al. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie78, 488–501 (1996). ArticleCASPubMed Google Scholar
Betts, L., Xiang, S., Short, S.A., Wolfenden, R. & Carter, C.W. Jr. Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. J. Mol. Biol.235, 635–656 (1994). ArticleCASPubMed Google Scholar
Chung, S.J., Fromme, J.C. & Verdine, G.L. Structure of human cytidine deaminase bound to a potent inhibitor. J. Med. Chem.48, 658–660 (2005). ArticleCASPubMed Google Scholar
Xie, K. et al. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc. Natl. Acad. Sci. USA101, 8114–8119 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kinoshita, T., Nishio, N., Nakanishi, I., Sato, A. & Fujii, T. Structure of bovine adenosine deaminase complexed with 6-hydroxy-1,6-dihydropurine riboside. Acta Crystallogr. D Biol. Crystallogr.59, 299–303 (2003). ArticlePubMed Google Scholar
Elias, Y. & Huang, R.H. Biochemical and structural studies of A-to-I editing by tRNA:A34 deaminases at the wobble position of transfer RNA. Biochemistry44, 12057–65 (2005). ArticleCASPubMed Google Scholar
Kuratani, M. et al. Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus. J. Biol. Chem.280, 16002–16008 (2005). ArticleCASPubMed Google Scholar
Shi, H. & Moore, P.B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA6, 1091–1105 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nissen, P., Thirup, S., Kjeldgaard, M. & Nyborg, J. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Struct. Fold. Des.7, 143–156 (1999). ArticleCAS Google Scholar
Murphy, F.V.t. & Ramakrishnan, V. Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nat. Struct. Mol. Biol.11, 1251–1252 (2004). ArticleCASPubMed Google Scholar
Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell111, 721–732 (2002). ArticleCASPubMed Google Scholar
Nagaswamy, U., Voss, N., Zhang, Z. & Fox, G.E. Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res.28, 375–376 (2000). ArticleCASPubMedPubMed Central Google Scholar
Xie, W., Liu, X. & Huang, R.H. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat. Struct. Biol.10, 781–788 (2003). ArticleCASPubMed Google Scholar
Rould, M.A., Perona, J.J. & Steitz, T.A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature352, 213–218 (1991). ArticleCASPubMed Google Scholar
Wolfenden, R. & Kati, W.M. Testing the limits of protein-ligand binding discrimination with transition-state analogue inhibitors. Acc. Chem. Res.24, 209–215 (1991). ArticleCAS Google Scholar
Veliz, E.A., Easterwood, L.M. & Beal, P.A. Substrate analogues for an RNA-editing adenosine deaminase: mechanistic investigation and inhibitor design. J. Am. Chem. Soc.125, 10867–10876 (2003). ArticleCASPubMed Google Scholar
Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol.229, 105–124 (1993). ArticleCASPubMed Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol.374, 22–37 (2003). ArticleCASPubMed Google Scholar
COLLABORATIVE COMPUTATIONAL PROJECT. N. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Cowtan, K. dm: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography31, 34–38 (1994). Google Scholar
Morris, R.J. et al. Breaking good resolutions with ARP/wARP. J. Synchrotron Radiat.11, 56–59 (2004). ArticleCASPubMed Google Scholar
Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol.6, 458–463 (1999). ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCASPubMed Google Scholar
Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr.26, 283–290 (1993). ArticleCAS Google Scholar
Kabsch, W. A solution for the best way to relate two sets of vectors. Acta Crystallogr. A32, 922–923 (1976). Article Google Scholar