- Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).
Article CAS Google Scholar
- Uversky, V.N. & Fink, A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta 1698, 131–153 (2004).
Article CAS Google Scholar
- Colon, W. & Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).
Article CAS Google Scholar
- Calamai, M., Chiti, F. & Dobson, C.M. Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophys. J. 89, 4201–4210 (2005).
Article CAS Google Scholar
- Kelly, J.W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).
Article CAS Google Scholar
- Vendruscolo, M. & Dobson, C.M. Towards complete descriptions of the free-energy landscapes of proteins. Philos. Transact. A Math. Phys. Eng. Sci. 363, 433–450 (2005).
Article CAS Google Scholar
- Jahn, T.R. & Radford, S.E. The Yin and Yang of protein folding. FEBS J. 272, 5962–5970 (2005).
Article CAS Google Scholar
- Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 9, 137–143 (2002).
Article CAS Google Scholar
- Lashuel, H.A., Lai, Z. & Kelly, J.W. Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37, 17851–17864 (1998).
Article CAS Google Scholar
- Booth, D.R. et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 (1997).
Article CAS Google Scholar
- Liu, K., Cho, H.S., Lashuel, H.A., Kelly, J.W. & Wemmer, D.E. A glimpse of a possible amyloidogenic intermediate of transthyretin. Nat. Struct. Biol. 7, 754–757 (2000).
Article CAS Google Scholar
- Khurana, R. et al. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40, 3525–3535 (2001).
Article CAS Google Scholar
- Verdone, G. et al. The solution structure of human β2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci. 11, 487–499 (2002).
Article CAS Google Scholar
- Jahn, T.R. & Radford, S.E. β2-microglobulin. in Amyloid Proteins: The Beta Sheet Conformation and Diseases Vol. 2 (ed. Sipe, J.D.) 667–695 (Wiley-VCH, Weinheim, Germany, 2005).
Chapter Google Scholar
- Gejyo, F., Homma, N., Suzuki, Y. & Arakawa, M. Serum levels of β2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N. Engl. J. Med. 314, 585–586 (1986).
Article CAS Google Scholar
- McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Structural properties of an amyloid precursor of β2-microglobulin. Nat. Struct. Biol. 9, 326–331 (2002).
Article CAS Google Scholar
- Platt, G.W., McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Dynamics in the unfolded state of β2-microglobulin studied by NMR. J. Mol. Biol. 346, 279–294 (2005).
Article CAS Google Scholar
- Chiti, F. et al. A partially structured species of β2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J. Biol. Chem. 276, 46714–46721 (2001).
Article CAS Google Scholar
- Chiti, F. et al. Detection of two partially structured species in the folding process of the amyloidogenic protein β2-microglobulin. J. Mol. Biol. 307, 379–391 (2001).
Article CAS Google Scholar
- Kameda, A. et al. Nuclear magnetic resonance characterization of the refolding intermediate of β2-microglobulin trapped by non-native prolyl peptide bond. J. Mol. Biol. 348, 383–397 (2005).
Article CAS Google Scholar
- Naiki, H. et al. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4, 223–232 (1997).
Article CAS Google Scholar
- Yamamoto, S. et al. Glycosaminoglycans enhance the trifluoroethanol-induced extension of β2-microglobulin-related amyloid fibrils at a neutral pH. J. Am. Soc. Nephrol. 15, 126–133 (2004).
Article CAS Google Scholar
- Balbach, J. & Schmid, F.X. Proline isomerisation and its catalysis in protein folding. in Mechanisms of Protein Folding 2nd edn (ed. Pain, R.H.) 212–249 (Oxford University Press, Oxford, 2000).
Google Scholar
- Benyamini, H., Gunasekaran, K., Wolfson, H. & Nussinov, R. β2-microglobulin amyloidosis: insights from conservation analysis and fibril modelling by protein docking techniques. J. Mol. Biol. 330, 159–174 (2003).
Article CAS Google Scholar
- Parker, M.J., Dempsey, C.E., Lorch, M. & Clarke, A.R. Acquisition of native β-strand topology during the rapid collapse phase of protein folding. Biochemistry 36, 13396–13405 (1997).
Article CAS Google Scholar
- Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. & Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269 (2005).
Article CAS Google Scholar
- Richardson, J.S. & Richardson, D.C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA 99, 2754–2759 (2002).
Article CAS Google Scholar
- Elam, J.S. et al. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat. Struct. Biol. 10, 461–467 (2003).
Article CAS Google Scholar
- Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L. & Yeates, T.O. Arrangement of subunits and ordering of β-strands in an amyloid sheet. Nat. Struct. Biol. 9, 734–739 (2002).
Article CAS Google Scholar
- Trinh, C.H., Smith, D.P., Kalverda, A.P., Phillips, S.E. & Radford, S.E. Crystal structure of monomeric human β2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl. Acad. Sci. USA 99, 9771–9776 (2002).
Article CAS Google Scholar
- Jones, S., Smith, D.P. & Radford, S.E. Role of the N and C-terminal strands of β2-microglobulin in amyloid formation at neutral pH. J. Mol. Biol. 330, 935–941 (2003).
Article CAS Google Scholar
- Esposito, G. et al. Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 9, 831–845 (2000).
Article CAS Google Scholar
- Chien, P., Weissman, J.S. & DePace, A.H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).
Article CAS Google Scholar
- Jimenez, J.L. et al. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 99, 9196–9201 (2002).
Article CAS Google Scholar
- Barral, J.M., Broadley, S.A., Schaffar, G. & Hartl, F.U. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17–29 (2004).
Article CAS Google Scholar
- Mallis, R.J., Brazin, K.N., Fulton, D.B. & Andreotti, A.H. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat. Struct. Biol. 9, 900–905 (2002).
Article CAS Google Scholar
- Eckert, B., Martin, A., Balbach, J. & Schmid, F.X. Prolyl isomerization as a molecular timer in phage infection. Nat. Struct. Mol. Biol. 12, 619–623 (2005).
Article CAS Google Scholar
- Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).
Article CAS Google Scholar
- Wigley, W.C. et al. A protein sequence that can encode native structure by disfavoring alternate conformations. Nat. Struct. Biol. 9, 381–388 (2002).
CAS PubMed Google Scholar
- Liou, Y.C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).
Article CAS Google Scholar
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).
Article CAS Google Scholar
- Kad, N.M., Thomson, N.H., Smith, D.P., Smith, D.A. & Radford, S.E. β2-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J. Mol. Biol. 313, 559–571 (2001).
Article CAS Google Scholar
- Nilsson, M.R. Techniques to study amyloid fibril formation in vitro. Methods 34, 151–160 (2004).
Article CAS Google Scholar
- Myers, S.L. et al. A systematic study of the effect of physiological factors on β2-microglobulin amyloid formation at neutral pH. Biochemistry (in the press).
- O'Nuallain, B. & Wetzel, R. Conformational antibodies recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99, 1485–1490 (2002).
Article CAS Google Scholar
- Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
Article CAS Google Scholar
- Johnson, B.A. & Blevins, R.A. NMRview: a computer program for the visualisation and analysis for NMR data. J. Biol. NMR 4, 603–614 (1994).
Article CAS Google Scholar
- Lapidus, L.J., Eaton, W.A. & Hofrichter, J. Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl. Acad. Sci. USA 97, 7220–7225 (2000).
Article CAS Google Scholar
- DeLano, W. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, California, USA, 2002).
- Gruebele, M. Protein folding: the free energy surface. Curr. Opin. Struct. Biol. 12, 161–168 (2002).
Article CAS Google Scholar