Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair (original) (raw)

References

  1. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).
    Article CAS Google Scholar
  2. Wood, R.D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).
    Article CAS Google Scholar
  3. De Laat, W.L., Jaspers, N.G. & Hoeijmakers, J.H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).
    Article CAS Google Scholar
  4. Mitchell, D.L. The induction and repair of lesions produced by the photolysis of (6–4) photoproducts in normal and UV-hypersensitive human cells. Mutat. Res. 194, 227–237 (1988).
    CAS PubMed Google Scholar
  5. Reardon, J.T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17, 2539–2551 (2003).
    Article CAS Google Scholar
  6. Friedberg, E.C., Walker, G.C. & Siede, W. DNA Repair and Mutagenesis (ASM Press, Washington, DC, USA, 1995).
    Google Scholar
  7. Kraemer, K.H., Lee, M.M. & Scotto, J. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5, 511–514 (1984).
    Article CAS Google Scholar
  8. States, J.C., McDuffie, E.R., Myrand, S.P., McDowell, M. & Cleaver, J.E. Distribution of mutations in the human xeroderma pigementosum group A gene and their relationships to the functional regions of the DNA damage recognition protein. Hum. Mutat. 12, 103–113 (1998).
    Article CAS Google Scholar
  9. Cleaver, J.E., Thompson, L.H., Richardson, A.S. & States, J.C. A summary of mutations in the UV-sensitive disorders: xeroderma pigementosum, Cockayne syndrome, and trichothiodystrophy. Hum. Mutat. 14, 9–22 (1999).
    Article CAS Google Scholar
  10. Huang, J.C., Svoboda, D., Reardon, J.T. & Sancar, A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc. Natl. Acad. Sci. USA 89, 3664–3668 (1992).
    Article CAS Google Scholar
  11. Evans, E., Fellows, J., Coffer, A. & Wood, R.D. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16, 625–638 (1997).
    Article CAS Google Scholar
  12. Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).
    Article CAS Google Scholar
  13. Mellon, I., Spivak, G. & Hanawalt, P.C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).
    Article CAS Google Scholar
  14. Friedberg, E.C. DNA damage and repair. Nature 421, 436–440 (2003).
    Article Google Scholar
  15. Mu, D. et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270, 2415–2418 (1995).
    Article CAS Google Scholar
  16. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223–232 (1998).
    Article CAS Google Scholar
  17. Araújo, S.J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349–359 (2000).
    PubMed PubMed Central Google Scholar
  18. Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).
    Article CAS Google Scholar
  19. Yang, Z.G., Liu, Y., Mao, L.Y., Zhang, J.-T. & Zou, Y. Dimerization of human XPA and formation of XPA2-RPA protein complex. Biochemistry 41, 13012–13020 (2002).
    Article CAS Google Scholar
  20. He, Z., Henricksen, L.A., Wold, M.S. & Ingles, C.J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374, 566–569 (1995).
    Article CAS Google Scholar
  21. Li, L., Lu, X., Peterson, C.A. & Legerski, R.J. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol. Cell. Biol. 15, 5396–5402 (1995).
    Article CAS Google Scholar
  22. Park, C.H., Mu, D., Reardon, J.T. & Sancar, A. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J. Biol. Chem. 270, 4896–4902 (1995).
    Article CAS Google Scholar
  23. Kuraoka, I. et al. Identification of a damaged-DNA binding domain of the XPA protein. Mutat. Res. 362, 87–95 (1996).
    Article Google Scholar
  24. Cleaver, J.E. & States, J.C. The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem. J. 328, 1–12 (1997).
    Article CAS Google Scholar
  25. Ikegami, T. et al. Solution structure of the DNA-and RPA-binding domain of the human repair factor XPA. Nat. Struct. Biol. 5, 701–706 (1998).
    Article CAS Google Scholar
  26. Buchko, G.W. et al. DNA-XPA interactions: a 31P NMR and molecular modeling study of dCCAATAACC association with the minimal DNA-binding domain (M98–F219) of the nucleotide excision repair protein XPA. Nucleic Acids Res. 29, 2635–2643 (2001).
    Article CAS Google Scholar
  27. Carreau, M. et al. Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes. Carcinogenesis 16, 1003–1009 (1995).
    Article CAS Google Scholar
  28. Mellon, I., Hock, T., Reid, R., Porter, P.C. & States, J.C. Polymorphisms in the human xeroderma pigmentosum group A gene and their impact on cell survival and nucleotide excision repair. DNA Repair (Amst.) 1, 531–546 (2002).
    Article CAS Google Scholar
  29. Jones, C.J. & Wood, R.D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32, 12096–12104 (1993).
    Article CAS Google Scholar
  30. You, J.S., Wang, M. & Lee, S.H. Biochemical analysis of the damage recognition process in nucleotide excision repair. J. Biol. Chem. 278, 7476–7485 (2003).
    Article CAS Google Scholar
  31. Werner, M.H., Gronenborn, A.M. & Clore, G.M. Intercalation, DNA kinking, and the control of transcription. Science 271, 778–784 (1996).
    Article CAS Google Scholar
  32. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004).
    Article CAS Google Scholar
  33. Riedl, T., Hanaoka, F. & Egly, J.M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22, 5293–5303 (2003).
    Article CAS Google Scholar
  34. Enzlin, J.H. & Schärer, O.D. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 21, 2045–2053 (2002).
    Article CAS Google Scholar
  35. McDowell, M.L., Nguyen, T. & Cleaver, J.E. A single-site mutation in the XPAC gene alters photoproduct recognition. Mutagenesis 8, 155–161 (1993).
    Article CAS Google Scholar
  36. Kobayashi, T. et al. Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand specific repair. Nucleic Acids Res. 26, 4662–4668 (1998).
    Article CAS Google Scholar
  37. Fujiwara, Y. et al. Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J. Biol. Chem. 274, 20027–20033 (1999).
    Article CAS Google Scholar
  38. Janicijevic, A. et al. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst.) 2, 325–336 (2003).
    Article CAS Google Scholar
  39. Mu, D., Wakasugi, M., Hsu, D.S. & Sancar, A. Characterization of reaction intermediates of human excision repair nuclease. J. Biol. Chem. 272, 28971–28979 (1997).
    Article CAS Google Scholar
  40. O'Donovan, A., Davies, A.A., Moggs, J.G., West, S.C. & Wood, R. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994).
    Article CAS Google Scholar
  41. Ortiz-Lombardia, M. et al. Crystal structure of a DNA Holliday junction. Nat. Struct. Biol. 6, 913–917 (1999).
    Article CAS Google Scholar
  42. Isaacs, R.J. & Spielmann, H.P. A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility. DNA Repair (Amst.) 3, 455–464 (2004).
    Article CAS Google Scholar
  43. Weir, H.M. et al. Structure of the HMG box motif in the B-domain of HMG1. EMBO J. 12, 1311–1319 (1993).
    Article CAS Google Scholar
  44. Read, C.M., Cary, P.D., Crane-Robinson, C., Driscoll, P.C. & Norman, D.G. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21, 3427–3436 (1993).
    Article CAS Google Scholar
  45. Kasparkova, J., Mellish, K.J., Qu, Y. & Brabec, V. Site-specific d(GpG) intrastrand cross-links formed by dinuclear platinum complexes. Bending and NMR studies. Biochemistry 35, 16705–16713 (1996).
    Article CAS Google Scholar
  46. Missura, M. et al. Double-check probing of DNA binding and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J. 20, 3554–3564 (2001).
    Article CAS Google Scholar
  47. Dip, R. & Naegeli, H. Binding of the DNA-dependent protein kinase catalytic subunit to Holliday junctions. Biochem. J. 381, 165–174 (2004).
    Article CAS Google Scholar
  48. Ford, J.M. & Hanawalt, P.C. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl. Acad. Sci. USA 92, 8876–8880 (1995).
    Article CAS Google Scholar

Download references