Iizuka, M. & Smith, M.M. Functional consequences of histone modifications. Curr. Opin. Genet. Dev.13, 154–160 (2003). ArticleCAS Google Scholar
Fischle, W., Wang, Y. & Allis, C.D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol.15, 172–183 (2003). ArticleCAS Google Scholar
Zeng, L. & Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett.513, 124–128 (2002). ArticleCAS Google Scholar
Brehm, A., Tufteland, K.R., Aasland, R. & Becker, P.B. The many colours of chromodomains. Bioessays26, 133–140 (2004). ArticleCAS Google Scholar
Sims, R.J., III et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem.280, 41789–41792 (2005). ArticleCAS Google Scholar
Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science312, 748–751 (2006). ArticleCAS Google Scholar
Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell121, 859–872 (2005). ArticleCAS Google Scholar
Gori, F., Divieti, P. & Demay, M.B. Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation. J. Biol. Chem.276, 46515–46522 (2001). ArticleCAS Google Scholar
Gori, F. & Demay, M.B. BIG-3, a novel WD-40 repeat protein, is expressed in the developing growth plate and accelerates chondrocyte differentiation in vitro. Endocrinology145, 1050–1054 (2004). ArticleCAS Google Scholar
Gori, F. & Demay, M.B. The effects of BIG-3 on osteoblast differentiation are not dependent upon endogenously produced BMPs. Exp. Cell Res.304, 287–292 (2005). ArticleCAS Google Scholar
Gori, F., Friedman, L. & Demay, M.B. Wdr5, a novel WD repeat protein, regulates osteoblast and chondrocyte differentiation in vivo. J. Musculoskelet. Neuronal Interact.5, 338–339 (2005). CASPubMed Google Scholar
Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell10, 1107–1117 (2002). ArticleCAS Google Scholar
Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell10, 1119–1128 (2002). ArticleCAS Google Scholar
Goo, Y.H. et al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol. Cell. Biol.23, 140–149 (2003). ArticleCAS Google Scholar
Wysocka, J., Myers, M.P., Laherty, C.D., Eisenman, R.N. & Herr, W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3–K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev.17, 896–911 (2003). ArticleCAS Google Scholar
Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell13, 587–597 (2004). ArticleCAS Google Scholar
Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol.24, 5639–5649 (2004). ArticleCAS Google Scholar
Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell10, 1107–1117 (2002). ArticleCAS Google Scholar
Milne, T.A. et al. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA102, 14765–14770 (2005). ArticleCAS Google Scholar
Guenther, M.G. et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl. Acad. Sci. USA102, 8603–8608 (2005). ArticleCAS Google Scholar
Shannon, M.P., Kaufman, T.C., Shen, M.W. & Judd, B.H. Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zeste-white region of Drosophila melanogaster. Genetics72, 615–638 (1972). CASPubMedPubMed Central Google Scholar
Hollmann, M., Simmerl, E., Schafer, U. & Schafer, M.A. The essential Drosophila melanogaster gene wds (will die slowly) codes for a WD-repeat protein with seven repeats. Mol. Genet. Genomics268, 425–433 (2002). ArticleCAS Google Scholar
Nielsen, P.R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature416, 103–107 (2002). ArticleCAS Google Scholar
Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080–2083 (2002). ArticleCAS Google Scholar
Schurter, B.T. et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry40, 5747–5756 (2001). ArticleCAS Google Scholar
Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science306, 279–283 (2004). ArticleCAS Google Scholar
Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell118, 545–553 (2004). ArticleCAS Google Scholar
Dai, J., Sultan, S., Taylor, S.S. & Higgins, J.M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev.19, 472–488 (2005). ArticleCAS Google Scholar
Fischle, W., Wang, Y. & Allis, C.D. Binary switches and modification cassettes in histone biology and beyond. Nature425, 475–479 (2003). ArticleCAS Google Scholar
Lambright, D.G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature379, 311–319 (1996). ArticleCAS Google Scholar
Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell112, 243–256 (2003). ArticleCAS Google Scholar
Wu, G. et al. Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol. Cell11, 1445–1456 (2003). ArticleCAS Google Scholar
Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell87, 95–104 (1996). ArticleCAS Google Scholar
Parthun, M.R., Widom, J. & Gottschling, D.E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell87, 85–94 (1996). ArticleCAS Google Scholar
Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol.8, 96–108 (1998). ArticleCAS Google Scholar
Zhang, Q., Vo, N. & Goodman, R.H. Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB. Mol. Cell. Biol.20, 4970–4978 (2000). ArticleCAS Google Scholar
Martinez-Balbas, M.A., Tsukiyama, T., Gdula, D. & Wu, C. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc. Natl. Acad. Sci. USA95, 132–137 (1998). ArticleCAS Google Scholar
Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell89, 357–364 (1997). ArticleCAS Google Scholar
Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell2, 851–861 (1998). ArticleCAS Google Scholar
Zhang, Y., LeRoy, G., Seelig, H.P., Lane, W.S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell95, 279–289 (1998). ArticleCAS Google Scholar
Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13, 1924–1935 (1999). ArticleCAS Google Scholar
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16, 2893–2905 (2002). ArticleCAS Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCAS Google Scholar
Sewalt, R.G. et al. Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol. Cell. Biol.18, 3586–3595 (1998). ArticleCAS Google Scholar
Montgomery, N.D. et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol.15, 942–947 (2005). ArticleCAS Google Scholar
Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif.15, 34–39 (1999). ArticleCAS Google Scholar
Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr.20, 306–315 (1987). ArticleCAS Google Scholar
Lambert, C., Leonard, N., De Bolle, X. & Depiereux, E. ESyPred3D: prediction of proteins 3D structures. Bioinformatics18, 1250–1256 (2002). ArticleCAS Google Scholar
McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr.61, 458–464 (2005). Article Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCAS Google Scholar
Fenn, T.D., Ringe, D. & Petsko, G.A. POVScript+: a program for model and data visualization using persistence of vision ray-tracing. J. Appl. Crystallogr.36, 944–947 (2003). ArticleCAS Google Scholar