Sequence-specific dynamics modulate recognition specificity in WW domains (original) (raw)

References

  1. Sudol, M. & Hunter, T. New wrinkles for an old domain. Cell 103, 1001–1004 (2000).
    Article CAS Google Scholar
  2. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).
    Article CAS Google Scholar
  3. Zarrinpar, A., Bhattacharyya, R.P. & Lim, W.A. The structure and function of proline recognition domains. Sci. STKE 2003, RE8 (2003).
    PubMed Google Scholar
  4. Wintjens, R. et al. 1H NMR study on the binding of PIN1 Trp-Trp domain with phosphothreonine peptides. J. Biol. Chem. 276, 25150–25156 (2001).
    Article CAS Google Scholar
  5. Jäger, M. et al. Structure-function-folding relationship in a WW domain. Proc. Natl. Acad. Sci. USA 103, 10648–10653 (2006).
    Article Google Scholar
  6. Kowalski, J.A., Liu, K. & Kelly, J.W. NMR solution structure of the isolated Apo PIN1 WW domain: comparison to the x-ray crystal structures of PIN1. Biopolymers 63, 111–121 (2002).
    Article CAS Google Scholar
  7. Jacobs, D.M. et al. Peptide binding induces large scale changes in inter-domain mobility in human PIN1. J. Biol. Chem. 278, 26174–26182 (2003).
    Article CAS Google Scholar
  8. Bayer, E. et al. Structural analysis of the mitotic regulator hPIN1 in solution: insights into domain architecture and substrate binding. J. Biol. Chem. 278, 26183–26193 (2003).
    Article CAS Google Scholar
  9. Peng, J.W. & Wagner, G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry 34, 16733–16752 (1995).
    Article CAS Google Scholar
  10. Ishima, R. & Nagayama, K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 34, 3162–3171 (1995).
    Article CAS Google Scholar
  11. Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. & Kay, L.E. Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR 6, 153–162 (1995).
    Article CAS Google Scholar
  12. Brutscher, B., Bruschweiler, R. & Ernst, R.R. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry 36, 13043–13053 (1997).
    Article CAS Google Scholar
  13. Massi, F., Johnson, E., Wang, C., Rance, M. & Palmer, A.G., III . NMR R1 rho rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc. 126, 2247–2256 (2004).
    Article CAS Google Scholar
  14. Luz, Z. & Meiboom, S. Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution – order of the reaction with respect to solvent. J. Chem. Phys. 39, 366–370 (1963).
    Article CAS Google Scholar
  15. Trott, O. & Palmer, A.G., III . R1rho relaxation outside of the fast-exchange limit. J. Magn. Reson. 154, 157–160 (2002).
    Article CAS Google Scholar
  16. Carver, J.P. & Richards, R.E. A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. J. Magn. Reson. 6, 89–105 (1972).
    CAS Google Scholar
  17. Millet, O., Loria, J.P., Kroenke, C.D., Pons, M. & Palmer, A.G., III . The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc. 122, 2867–2877 (2000).
    Article CAS Google Scholar
  18. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).
    Article CAS Google Scholar
  19. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).
    Article CAS Google Scholar
  20. Lacy, E.R. et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol. 11, 358–364 (2004).
    Article CAS Google Scholar
  21. Heinz, D.W. et al. Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation. Biochemistry 31, 8755–8766 (1992).
    Article CAS Google Scholar
  22. Peng, J.W. & Wagner, G. Investigation of protein motions via relaxation measurements. Methods Enzymol. 239, 563–596 (1994).
    Article CAS Google Scholar
  23. Jäger, M., Nguyen, H., Crane, J.C., Kelly, J.W. & Gruebele, M. The folding mechanism of a beta-sheet: the WW domain. J. Mol. Biol. 311, 373–393 (2001).
    Article Google Scholar
  24. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990).
    Article CAS Google Scholar
  25. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J. Magn. Reson. A 101, 201–205 (1993).
    Article CAS Google Scholar
  26. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293 (1992).
    Article CAS Google Scholar
  27. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).
    Article CAS Google Scholar
  28. Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 2387–2391 (1989).
    Article CAS Google Scholar
  29. Goddard, T.D. & Kneller, D.G. SPARKY 3 (University of California, San Francisco, 2006).
    Google Scholar
  30. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).
    Article CAS Google Scholar
  31. Sklenar, V., Piotto, M., Leppik, R. & Saudek, V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. 102, 241–245 (1993).
    Article CAS Google Scholar
  32. Tjandra, N., Szabo, A. & Bax, A. Protein backbone dynamics and 15N chemical shift anisotropy from quantitative measurement of relaxation interference effects. J. Am. Chem. Soc. 118, 6986–6991 (1996).
    Article CAS Google Scholar
  33. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).
    Google Scholar
  34. Peng, J.W. & Wagner, G. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry 31, 8571–8586 (1992).
    Article CAS Google Scholar
  35. Peng, J.W. New probes of ligand flexibility in drug design: transferred (13)C CSA-dipolar cross-correlated relaxation at natural abundance. J. Am. Chem. Soc. 125, 11116–11130 (2003).
    Article CAS Google Scholar
  36. Palmer, A.G., III, Rance, M. & Wright, P.E. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear spectroscopy. J. Am. Chem. Soc. 113, 4371–4380 (1991).
    Article CAS Google Scholar
  37. Mandel, A.M., Akke, M. & Palmer, A.G., III . Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).
    Article CAS Google Scholar
  38. Lee, L.K., Rance, M., Chazin, W.J. & Palmer, A.G., III . Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).
    Article CAS Google Scholar
  39. Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7, 72–77 (2000).
    Article CAS Google Scholar
  40. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).
    Article CAS Google Scholar

Download references