Sequence-specific dynamics modulate recognition specificity in WW domains (original) (raw)
References
Sudol, M. & Hunter, T. New wrinkles for an old domain. Cell103, 1001–1004 (2000). ArticleCAS Google Scholar
Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol.7, 639–643 (2000). ArticleCAS Google Scholar
Zarrinpar, A., Bhattacharyya, R.P. & Lim, W.A. The structure and function of proline recognition domains. Sci. STKE2003, RE8 (2003). PubMed Google Scholar
Wintjens, R. et al. 1H NMR study on the binding of PIN1 Trp-Trp domain with phosphothreonine peptides. J. Biol. Chem.276, 25150–25156 (2001). ArticleCAS Google Scholar
Jäger, M. et al. Structure-function-folding relationship in a WW domain. Proc. Natl. Acad. Sci. USA103, 10648–10653 (2006). Article Google Scholar
Kowalski, J.A., Liu, K. & Kelly, J.W. NMR solution structure of the isolated Apo PIN1 WW domain: comparison to the x-ray crystal structures of PIN1. Biopolymers63, 111–121 (2002). ArticleCAS Google Scholar
Jacobs, D.M. et al. Peptide binding induces large scale changes in inter-domain mobility in human PIN1. J. Biol. Chem.278, 26174–26182 (2003). ArticleCAS Google Scholar
Bayer, E. et al. Structural analysis of the mitotic regulator hPIN1 in solution: insights into domain architecture and substrate binding. J. Biol. Chem.278, 26183–26193 (2003). ArticleCAS Google Scholar
Peng, J.W. & Wagner, G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry34, 16733–16752 (1995). ArticleCAS Google Scholar
Ishima, R. & Nagayama, K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry34, 3162–3171 (1995). ArticleCAS Google Scholar
Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. & Kay, L.E. Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR6, 153–162 (1995). ArticleCAS Google Scholar
Brutscher, B., Bruschweiler, R. & Ernst, R.R. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry36, 13043–13053 (1997). ArticleCAS Google Scholar
Massi, F., Johnson, E., Wang, C., Rance, M. & Palmer, A.G., III . NMR R1 rho rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc.126, 2247–2256 (2004). ArticleCAS Google Scholar
Luz, Z. & Meiboom, S. Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution – order of the reaction with respect to solvent. J. Chem. Phys.39, 366–370 (1963). ArticleCAS Google Scholar
Trott, O. & Palmer, A.G., III . R1rho relaxation outside of the fast-exchange limit. J. Magn. Reson.154, 157–160 (2002). ArticleCAS Google Scholar
Carver, J.P. & Richards, R.E. A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. J. Magn. Reson.6, 89–105 (1972). CAS Google Scholar
Millet, O., Loria, J.P., Kroenke, C.D., Pons, M. & Palmer, A.G., III . The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc.122, 2867–2877 (2000). ArticleCAS Google Scholar
Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc.104, 4546–4559 (1982). ArticleCAS Google Scholar
Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry28, 8972–8979 (1989). ArticleCAS Google Scholar
Lacy, E.R. et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol.11, 358–364 (2004). ArticleCAS Google Scholar
Heinz, D.W. et al. Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation. Biochemistry31, 8755–8766 (1992). ArticleCAS Google Scholar
Peng, J.W. & Wagner, G. Investigation of protein motions via relaxation measurements. Methods Enzymol.239, 563–596 (1994). ArticleCAS Google Scholar
Jäger, M., Nguyen, H., Crane, J.C., Kelly, J.W. & Gruebele, M. The folding mechanism of a beta-sheet: the WW domain. J. Mol. Biol.311, 373–393 (2001). Article Google Scholar
Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry29, 4659–4667 (1990). ArticleCAS Google Scholar
Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J. Magn. Reson. A101, 201–205 (1993). ArticleCAS Google Scholar
Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc.114, 6291–6293 (1992). ArticleCAS Google Scholar
Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. B101, 114–119 (1993). ArticleCAS Google Scholar
Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry28, 2387–2391 (1989). ArticleCAS Google Scholar
Goddard, T.D. & Kneller, D.G. SPARKY 3 (University of California, San Francisco, 2006). Google Scholar
Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry33, 5984–6003 (1994). ArticleCAS Google Scholar
Sklenar, V., Piotto, M., Leppik, R. & Saudek, V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson.102, 241–245 (1993). ArticleCAS Google Scholar
Tjandra, N., Szabo, A. & Bax, A. Protein backbone dynamics and 15N chemical shift anisotropy from quantitative measurement of relaxation interference effects. J. Am. Chem. Soc.118, 6986–6991 (1996). ArticleCAS Google Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in C (Cambridge University Press, Cambridge, 1992). Google Scholar
Peng, J.W. & Wagner, G. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry31, 8571–8586 (1992). ArticleCAS Google Scholar
Peng, J.W. New probes of ligand flexibility in drug design: transferred (13)C CSA-dipolar cross-correlated relaxation at natural abundance. J. Am. Chem. Soc.125, 11116–11130 (2003). ArticleCAS Google Scholar
Palmer, A.G., III, Rance, M. & Wright, P.E. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear spectroscopy. J. Am. Chem. Soc.113, 4371–4380 (1991). ArticleCAS Google Scholar
Mandel, A.M., Akke, M. & Palmer, A.G., III . Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol.246, 144–163 (1995). ArticleCAS Google Scholar
Lee, L.K., Rance, M., Chazin, W.J. & Palmer, A.G., III . Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J. Biomol. NMR9, 287–298 (1997). ArticleCAS Google Scholar
Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol.7, 72–77 (2000). ArticleCAS Google Scholar
Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem.26, 1668–1688 (2005). ArticleCAS Google Scholar