Crystal structure of human DGCR8 core (original) (raw)
References
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCAS Google Scholar
Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol.6, 376–385 (2005). ArticleCAS Google Scholar
Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23, 4051–4060 (2004). ArticleCAS Google Scholar
Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCAS Google Scholar
Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004). ArticleCAS Google Scholar
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol.14, 2162–2167 (2004). ArticleCAS Google Scholar
Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). ArticleCAS Google Scholar
Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev.18, 3016–3027 (2004). ArticleCAS Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). ArticleCAS Google Scholar
Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). ArticleCAS Google Scholar
Bohnsack, M.T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191 (2004). ArticleCAS Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). ArticleCAS Google Scholar
Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). ArticleCAS Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). ArticleCAS Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). ArticleCAS Google Scholar
Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). ArticleCAS Google Scholar
Hutvagner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002). ArticleCAS Google Scholar
Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCAS Google Scholar
Court, D. RNA processing and degradation by RNase III. in Control of Messenger RNA Stability (eds. Belasco, J.G. & Braverman, G.) 71–108 (Academic Press, New York, 1993). Chapter Google Scholar
Filippov, V., Solovyev, V., Filippova, M. & Gill, S.S. A novel type of RNase III family proteins in eukaryotes. Gene245, 213–221 (2000). ArticleCAS Google Scholar
Zeng, Y. & Cullen, B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem.280, 27595–27603 (2005). ArticleCAS Google Scholar
Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell125, 887–901 (2006). ArticleCAS Google Scholar
Shiohama, A., Sasaki, T., Noda, S., Minoshima, S. & Shimizu, N. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem. Biophys. Res. Commun.304, 184–190 (2003). ArticleCAS Google Scholar
Wilson, D.I., Burn, J., Scambler, P. & Goodship, J. DiGeorge syndrome: part of CATCH 22. J. Med. Genet.30, 852–856 (1993). ArticleCAS Google Scholar
Tian, B., Bevilacqua, P.C., Diegelman-Parente, A. & Mathews, M.B. The double-stranded-RNA-binding motif: interference and much more. Nat. Rev. Mol. Cell Biol.5, 1013–1023 (2004). ArticleCAS Google Scholar
Nanduri, S., Carpick, B.W., Yang, Y., Williams, B.R. & Qin, J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J.17, 5458–5465 (1998). ArticleCAS Google Scholar
Gan, J. et al. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell124, 355–366 (2006). ArticleCAS Google Scholar
Macrae, I.J. et al. Structural basis for double-stranded RNA processing by Dicer. Science311, 195–198 (2006). ArticleCAS Google Scholar
Yeom, K.H., Lee, Y., Han, J., Suh, M.R. & Kim, V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res.34, 4622–4629 (2006). ArticleCAS Google Scholar
Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl. Acad. Sci. USA101, 8307–8312 (2004). ArticleCAS Google Scholar
Ryter, J.M. & Schultz, S.C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J.17, 7505–7513 (1998). ArticleCAS Google Scholar
Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J.19, 997–1009 (2000). ArticleCAS Google Scholar
Faller, M., Matsunaga, M., Yin, S., Loo, J.A. & Guo, F. Heme is involved in microRNA processing. Nat. Struct. Mol. Biol.14, 23–29 (2007). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr.55, 849–861 (1999). ArticleCAS Google Scholar
Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr.56, 965–972 (2000). ArticleCAS Google Scholar
Kleywegt, G.J. & Jones, T.A. Efficient rebuilding of protein structures. Acta Crystallogr. D Biol. Crystallogr.50, 829–832 (1996). Article Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). Article Google Scholar
Laskowski, R.A., MacArthur, M.W., Moss, D.A. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst.26, 283–291 (1993). ArticleCAS Google Scholar