Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA92, 2563–2567 (1995). ArticleCASPubMedPubMed Central Google Scholar
Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature373, 81–83 (1995). ArticleCASPubMed Google Scholar
Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science286, 1321–1326 (1999). ArticleCASPubMed Google Scholar
Ogunjimi, A.A. et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell19, 297–308 (2005). ArticleCASPubMed Google Scholar
Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell11, 249–259 (2003). ArticleCASPubMed Google Scholar
Patel, J.C., Rossanese, O.W. & Galán, J.E. The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol. Sci.26, 564–570 (2005). ArticleCASPubMed Google Scholar
Stebbins, C.E. & Galan, J.E. Structural mimicry in bacterial virulence. Nature412, 701–705 (2001). ArticleCASPubMed Google Scholar
Zhang, Y., Higashide, W.M., McCormick, B.A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol.62, 786–793 (2006). ArticleCASPubMed Google Scholar
Huibregtse, J.M., Scheffner, M. & Howley, P.M. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol. Cell. Biol.13, 4918–4927 (1993). ArticleCASPubMedPubMed Central Google Scholar
Jenkins, J. & Pickersgill, R. The architecture of parallel β-helices and related folds. Prog. Biophys. Mol. Biol.77, 111–175 (2001). ArticleCASPubMed Google Scholar
Eletr, Z.M., Huang, D.T., Duda, D.M., Schulman, B.A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol.12, 933–934 (2005). ArticleCASPubMed Google Scholar
Nuber, U. & Scheffner, M. Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction. J. Biol. Chem.274, 7576–7582 (1999). ArticleCASPubMed Google Scholar
Janjusevic, R., Abramovitch, R.B., Martin, G.B. & Stebbins, C.E. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science311, 222–226 (2006). ArticleCASPubMed Google Scholar
Rohde, J.R., Breitkreutz, A., Chenal, A., Sansonetti, P.J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host & Microbe1, 77–83 (2007). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Abrahams, J.P. & Leslie, A.G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr.52, 30–42 (1996). ArticleCASPubMed Google Scholar
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticlePubMed Google Scholar
Zhang, Y., Higashide, W., Dai, S., Sherman, D.M. & Zhou, D. Recognition and ubiquitination of Salmonella type III effector SopA by a ubiquitin E3 ligase, HsRMA1. J. Biol. Chem.280, 38682–38688 (2005). ArticleCASPubMed Google Scholar