Distinct conformational states of nuclear receptor–bound CRSP–Med complexes (original) (raw)
References
Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell83, 835–839 (1995). ArticleCAS Google Scholar
Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev.14, 121–141 (2000). CAS Google Scholar
Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev.12, 3343–3356 (1998). ArticleCAS Google Scholar
Näär, A.M., Lemon, B.D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem.70, 475–501 (2001). Article Google Scholar
Rachez, C. & Freedman, L.P. Mediator complexes and transcription. Curr. Opin. Cell Biol.13, 274–280 (2001). ArticleCAS Google Scholar
Boyer, T.G., Martin, M.E.D., Lees, E., Riccardi, R.P. & Berk, A.J. Mammalian Srb/Mediator complex is targeted by adenovirus E1a protein. Nature399, 276–279 (1999). ArticleCAS Google Scholar
Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA93, 8329–8333 (1996). ArticleCAS Google Scholar
Gu, W. et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell3, 97–108 (1999). ArticleCAS Google Scholar
Malik, S., Gu, W., Wu, W., Qin, J. & Roeder, R.G. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell5, 753–760 (2000). ArticleCAS Google Scholar
Näär, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature398, 828–832 (1999). Article Google Scholar
Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature398, 824–828 (1999). ArticleCAS Google Scholar
Ryu, S., Zhou, S., Ladurner, A.G. & Tjian, R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature397, 446–450 (1999). ArticleCAS Google Scholar
Sun, X. et al. NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell2, 213–222 (1998). ArticleCAS Google Scholar
Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem.69, 729–749 (2000). ArticleCAS Google Scholar
Boube, M., Joulia, L., Cribbs, D.L. & Bourbon, H. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell110, 143–151 (2002). ArticleCAS Google Scholar
Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature424, 147–151 (2003). ArticleCAS Google Scholar
Taatjes, D.J., Näär, A.M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science295, 1058–1062 (2002). ArticleCAS Google Scholar
Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell3, 361–370 (1999). ArticleCAS Google Scholar
Yang, F., DeBeaumont, R., Zhou, S. & Näär, A.M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA101, 2339–2344 (2004). ArticleCAS Google Scholar
Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J.22, 6494–6504 (2003). ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). ArticleCAS Google Scholar
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure random conical tilt series applied to the 50s ribosomal subunit of Escherichia coli. J. Microsc.146, 113–136 (1987). ArticleCAS Google Scholar
Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik73, 146–153 (1986). Google Scholar
Dotson, M.R. et al. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA97, 14307–14310 (2000). ArticleCAS Google Scholar
Yuan, C., Ito, M., Fondell, J.D., Fu, Z. & Roeder, R.G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA95, 7939–7944 (1998). ArticleCAS Google Scholar
Näär, A.M., Taatjes, D.J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev.16, 1339–1344 (2002). Article Google Scholar
Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature407, 102–106 (2000). ArticleCAS Google Scholar
Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell95, 717–728 (1998). ArticleCAS Google Scholar
Carlson, M. Genetics of transcriptional regulation in yeast: connections with the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol.13, 1–23 (1997). ArticleCAS Google Scholar
Wurtz, J.M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol.3, 87–94 (1996). ArticleCAS Google Scholar
McInerney, E.M. et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev.12, 3357–3368 (1998). ArticleCAS Google Scholar
Warnmark, A., Almlof, T., Leers, J., Gustafsson, J.A. & Treuter, E. Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERα and ERβ. J Biol. Chem.276, 23397–23404 (2001). ArticleCAS Google Scholar
Rochel, N., Wurtz, J.M., Mitschler, A., Klaholz, B. & Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell5, 173–179 (2000). ArticleCAS Google Scholar
Coulthard, V.H., Matsuda, S. & Heery, D.M. An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. J. Biol. Chem.278, 10942–10951 (2003). ArticleCAS Google Scholar
Ren, Y. et al. Specific structural motifs determine TRAP220 interactions with nuclear hormone receptors. Mol. Cell. Biol.20, 5433–5446 (2000). ArticleCAS Google Scholar
Taatjes, D.J. & Tjian, R. Structure and function of CRSP/Med2: a promoter-selective co-activator complex. Mol. Cell14 (in the press).
Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell10, 409–415 (2002). ArticleCAS Google Scholar
Näär, A.M. et al. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev.12, 3020–3031 (1998). Article Google Scholar
Frank, J. Classification of macromolecular assemblies studied as 'single particles'. Q. Rev. Biophys.23, 281–329 (1990). ArticleCAS Google Scholar
Penczek, P.A., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-EM of biological particles. Ultramicroscopy53, 251–270 (1994). ArticleCAS Google Scholar