Distinct conformational states of nuclear receptor–bound CRSP–Med complexes (original) (raw)

References

  1. Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).
    Article CAS Google Scholar
  2. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).
    CAS Google Scholar
  3. Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).
    Article CAS Google Scholar
  4. Näär, A.M., Lemon, B.D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).
    Article Google Scholar
  5. Rachez, C. & Freedman, L.P. Mediator complexes and transcription. Curr. Opin. Cell Biol. 13, 274–280 (2001).
    Article CAS Google Scholar
  6. Boyer, T.G., Martin, M.E.D., Lees, E., Riccardi, R.P. & Berk, A.J. Mammalian Srb/Mediator complex is targeted by adenovirus E1a protein. Nature 399, 276–279 (1999).
    Article CAS Google Scholar
  7. Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93, 8329–8333 (1996).
    Article CAS Google Scholar
  8. Gu, W. et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97–108 (1999).
    Article CAS Google Scholar
  9. Malik, S., Gu, W., Wu, W., Qin, J. & Roeder, R.G. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5, 753–760 (2000).
    Article CAS Google Scholar
  10. Näär, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).
    Article Google Scholar
  11. Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).
    Article CAS Google Scholar
  12. Ryu, S., Zhou, S., Ladurner, A.G. & Tjian, R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397, 446–450 (1999).
    Article CAS Google Scholar
  13. Sun, X. et al. NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell 2, 213–222 (1998).
    Article CAS Google Scholar
  14. Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000).
    Article CAS Google Scholar
  15. Boube, M., Joulia, L., Cribbs, D.L. & Bourbon, H. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143–151 (2002).
    Article CAS Google Scholar
  16. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).
    Article CAS Google Scholar
  17. Taatjes, D.J., Näär, A.M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).
    Article CAS Google Scholar
  18. Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).
    Article CAS Google Scholar
  19. Yang, F., DeBeaumont, R., Zhou, S. & Näär, A.M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 101, 2339–2344 (2004).
    Article CAS Google Scholar
  20. Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22, 6494–6504 (2003).
    Article CAS Google Scholar
  21. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
    Article CAS Google Scholar
  22. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure random conical tilt series applied to the 50s ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).
    Article CAS Google Scholar
  23. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–153 (1986).
    Google Scholar
  24. Dotson, M.R. et al. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97, 14307–14310 (2000).
    Article CAS Google Scholar
  25. Yuan, C., Ito, M., Fondell, J.D., Fu, Z. & Roeder, R.G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95, 7939–7944 (1998).
    Article CAS Google Scholar
  26. Näär, A.M., Taatjes, D.J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).
    Article Google Scholar
  27. Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102–106 (2000).
    Article CAS Google Scholar
  28. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).
    Article CAS Google Scholar
  29. Carlson, M. Genetics of transcriptional regulation in yeast: connections with the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13, 1–23 (1997).
    Article CAS Google Scholar
  30. Wurtz, J.M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3, 87–94 (1996).
    Article CAS Google Scholar
  31. McInerney, E.M. et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12, 3357–3368 (1998).
    Article CAS Google Scholar
  32. Warnmark, A., Almlof, T., Leers, J., Gustafsson, J.A. & Treuter, E. Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERα and ERβ. J Biol. Chem. 276, 23397–23404 (2001).
    Article CAS Google Scholar
  33. Rochel, N., Wurtz, J.M., Mitschler, A., Klaholz, B. & Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell 5, 173–179 (2000).
    Article CAS Google Scholar
  34. Coulthard, V.H., Matsuda, S. & Heery, D.M. An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. J. Biol. Chem. 278, 10942–10951 (2003).
    Article CAS Google Scholar
  35. Ren, Y. et al. Specific structural motifs determine TRAP220 interactions with nuclear hormone receptors. Mol. Cell. Biol. 20, 5433–5446 (2000).
    Article CAS Google Scholar
  36. Taatjes, D.J. & Tjian, R. Structure and function of CRSP/Med2: a promoter-selective co-activator complex. Mol. Cell 14 (in the press).
  37. Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).
    Article CAS Google Scholar
  38. Dignam, J.D., Martin, P.L., Shastry, B.S. & Roeder, R.G. Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598 (1983).
    Article CAS Google Scholar
  39. Näär, A.M. et al. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12, 3020–3031 (1998).
    Article Google Scholar
  40. Frank, J. Classification of macromolecular assemblies studied as 'single particles'. Q. Rev. Biophys. 23, 281–329 (1990).
    Article CAS Google Scholar
  41. Penczek, P.A., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-EM of biological particles. Ultramicroscopy 53, 251–270 (1994).
    Article CAS Google Scholar

Download references