An unstructured initiation site is required for efficient proteasome-mediated degradation (original) (raw)
References
Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev.82, 373–428 (2002). ArticleCAS Google Scholar
Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCAS Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471 (1997). ArticleCAS Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol.7, 1062–1067 (2000). ArticleCAS Google Scholar
Wenzel, T. & Baumeister, W. Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol.2, 199–204 (1995). ArticleCAS Google Scholar
Johnston, J.A., Johnson, E.S., Waller, P.R.H. & Varshavsky, A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem.270, 8172–8178 (1995). ArticleCAS Google Scholar
Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem.269, 7059–7061 (1994). CASPubMed Google Scholar
Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L. & Pickart, C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416, 763–767 (2002). ArticleCAS Google Scholar
Braun, B.C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol.1, 221–226 (1999). ArticleCAS Google Scholar
Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell7, 627–637 (2001). ArticleCAS Google Scholar
Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell114, 511–520 (2003). ArticleCAS Google Scholar
Breitschopf, K., Bengal, E., Ziv, T., Admon, A. & Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J.17, 5964–5973 (1998). ArticleCAS Google Scholar
Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J.19, 94–102 (2000). ArticleCAS Google Scholar
Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science298, 611–615 (2002). ArticleCAS Google Scholar
Petroski, M.D. & Deshaies, R.J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell11, 1435–1444 (2003). ArticleCAS Google Scholar
Hoskins, J.R., Yanagihara, K., Mizuuchi, K. & Wickner, S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc. Natl. Acad. Sci. USA99, 11037–11042 (2002). ArticleCAS Google Scholar
Kihara, A., Akiyama, Y. & Ito, K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J.18, 2970–2981 (1999). ArticleCAS Google Scholar
Reid, B.G., Fenton, W.A., Horwich, A.L. & Weber-Ban, E.U. ClpA mediates directional translocation of the substrate proteins into the ClpP protease. Proc. Natl. Acad. Sci. USA98, 3768–3772 (2001). ArticleCAS Google Scholar
Herman, C., Prakash, S., Lu, C.Z., Matouschek, A. & Gross, C.A. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell11, 659–669 (2003). ArticleCAS Google Scholar
Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science234, 179–186 (1986). ArticleCAS Google Scholar
Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell Biol.19, 3664–3673 (1999). ArticleCAS Google Scholar
Orlowski, M. & Wilk, S. Ubiquitin-independent proteolytic functions of the proteasome. Arch. Biochem. Biophys.415, 1–5 (2003). ArticleCAS Google Scholar
Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell11, 671–683 (2003). ArticleCAS Google Scholar
Uversky, V.N. What does it mean to be natively unfolded? Eur. J. Biochem.269, 2–12 (2002). ArticleCAS Google Scholar
Viitanen, P.V., Donaldson, G.K., Lorimer, G.H., Lubben, T.H. & Gatenby, A.A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry30, 9716–9723 (1991). ArticleCAS Google Scholar
Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell56, 1019–1032 (1989). ArticleCAS Google Scholar
Stack, J.H., Whitney, M., Rodems, S.M. & Pollok, B.A. A ubiquitin-based tagging system for controlled modulation of protein stability. Nat. Biotechnol.18, 1298–1302 (2000). ArticleCAS Google Scholar
Liu, C.W., Corboy, M.J., DeMartino, G.N. & Thomas, P.J. Endoproteolytic activity of the proteasome. Science299, 408–411 (2003). ArticleCAS Google Scholar
Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol.21, 921–926 (2003). ArticleCAS Google Scholar
Scherer, D.C., Brockman, J.A., Chen, Z., Maniatis, T. & Ballard, D.W. Signal-induced degradation of IkBa requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA92, 11259–11263 (1995). ArticleCAS Google Scholar
Glotzer, M., Murray, A.W. & Kirschner, M.W. Cyclin is degraded by the ubiquitin pathway. Nature349, 132–138 (1991). ArticleCAS Google Scholar
Rodriguez, M.S., Desterro, J.M., Lain, S., Lane, D.P. & Hay, R.T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome–mediated degradation. Mol. Cell Biol.20, 8458–8467 (2000). ArticleCAS Google Scholar
Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell102, 577–586 (2000). ArticleCAS Google Scholar
Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases. Q. Rev. Biophys.35, 431–478 (2002). ArticleCAS Google Scholar
Tsu, C.A., Kossen, K. & Uhlenbeck, O.C. The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA7, 702–709 (2001). ArticleCAS Google Scholar
Levchenko, I., Seidel, M., Sauer, R.T. & Baker, T.A. A specificity-enhancing factor for the ClpXP degradation machine. Science289, 2354–2356 (2000). ArticleCAS Google Scholar
Neher, S.B., Sauer, R.T. & Baker, T.A. Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD/D′ mediate tethering and substrate processing by the ClpXP protease. Proc. Natl. Acad. Sci. USA100, 13219–13224 (2003). ArticleCAS Google Scholar
Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol.4, 725–730 (2002). ArticleCAS Google Scholar
Alberti, S. et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem.277, 45920–45927 (2002). ArticleCAS Google Scholar
Rao, H. & Sastry, A. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem.277, 11691–11695 (2002). ArticleCAS Google Scholar
Raasi, S. & Pickart, C.M. Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48–linked polyubiquitin chains. J. Biol. Chem.278, 8951–8959 (2003). ArticleCAS Google Scholar
Kleijnen, M.F., Alarcon, R.M. & Howley, P.M. The ubiquitin-associated domain of hPLIC-2 interacts with the proteasome. Mol. Biol. Cell14, 3868–3875 (2003). ArticleCAS Google Scholar
Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res.32 (Database issue), D138–D141 (2004). ArticleCAS Google Scholar
Dai, R.M., Chen, E., Longo, D.L., Gorbea, C.M. & Li, C.C. Involvement of valosin-containing protein, an ATPase co-purified with IκBα and 26 S proteasome, in ubiquitin-proteasome–mediated degradation of IκBα. J. Biol. Chem.273, 3562–3573 (1998). ArticleCAS Google Scholar
Lam, Y.A., Xu, W., DeMartino, G.N. & Cohen, R.E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature385, 737–740 (1997). ArticleCAS Google Scholar
Leggett, D.S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell10, 495–507 (2002). ArticleCAS Google Scholar
Hartley, R.W. A two state conformational transition of the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) induced by sodium dodecyl sulfate. Biochemistry14, 2367–2370 (1975). ArticleCAS Google Scholar
Rood, J.I., Laird, A.J. & Williams, J.W. Cloning of the Escherichia coli K-12 dihydrofolate reductase gene following mu-mediated transposition. Gene8, 255–265 (1980). ArticleCAS Google Scholar
Iwakura, M., Nakamura, T., Yamane, C. & Maki, K. Systematic circular permutation of an entire protein reveals essential folding elements. Nat. Struct. Biol.7, 580–585 (2000). ArticleCAS Google Scholar
Matouschek, A. et al. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J.16, 6727–6736 (1997). ArticleCAS Google Scholar
Gonda, D.K. et al. Universality and structure of the N-end rule. J. Biol. Chem.264, 16700–16712 (1989). CASPubMed Google Scholar
Larsen, C.N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell91, 431–434 (1997). ArticleCAS Google Scholar