Structural basis of Rab5-Rabaptin5 interaction in endocytosis (original) (raw)
Pereira-Leal, J.B. & Seabra, M.C. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol.301, 1077–1087 (2000). ArticleCASPubMed Google Scholar
Zahraoui, A., Touchot, N., Chardin, P. & Tavitian, A. The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J. Biol. Chem.264, 12394–12401 (1989). CASPubMed Google Scholar
Alexandrov, K., Horiuchi, H., Steele-Mortimer, O., Seabra, M.C. & Zerial, M. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J.13, 5262–5273 (1994). ArticleCASPubMedPubMed Central Google Scholar
Merithew, E. et al. Structural plasticity of an invariant hydrophobic triad in the switch regions of Rab GTPases is a determinant of effector recognition. J. Biol. Chem.276, 13982–13988 (2001). ArticleCASPubMed Google Scholar
Li, G. & Stahl, P.D. Structure-function relationship of the small GTPase Rab5. J. Biol. Chem.268, 24475–24480 (1993). CASPubMed Google Scholar
Li, G., Barbieri, M.A., Colombo, M.I. & Stahl, P.D. Structural features of the GTP-binding defective Rab5 mutants required for their inhibitory activity on endocytosis. J. Biol. Chem.269, 14631–14635 (1994). CASPubMed Google Scholar
Hoffenberg, S. et al. Biochemical and functional characterization of a recombinant GTPase, Rab5, and two of its mutants. J. Biol. Chem.270, 5048–5056 (1995). ArticleCASPubMed Google Scholar
Bucci, C. et al. The small GTPase Rab5 functions as a regulatory factor in the early endocytic pathway. Cell70, 715–728 (1992). ArticleCASPubMed Google Scholar
Gorvel, J.P., Chavrier, P., Zerial, M. & Gruenberg, J. Rab5 controls early endosome fusion in vitro. Cell64, 915–925 (1991). ArticleCASPubMed Google Scholar
McBride, H.M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell98, 377–386 (1999). ArticleCASPubMed Google Scholar
Rothman, J.E. & Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol.4, 220–233 (1994). ArticleCASPubMed Google Scholar
Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science294, 1299–1304 (2001). ArticleCASPubMed Google Scholar
Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature368, 157–160 (1994). ArticleCASPubMed Google Scholar
Tall, G.G., Barbieri, M.A., Stahl, P.D. & Horazdovsky, B.F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell1, 73–82 (2001). ArticleCASPubMed Google Scholar
Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell90, 1149–1159 (1997). ArticleCASPubMed Google Scholar
Lanzetti, L. et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature408, 374–377 (2000). ArticleCASPubMed Google Scholar
Rybin, V. et al. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature383, 266–269 (1996). ArticleCASPubMed Google Scholar
Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell83, 423–432 (1995). ArticleCASPubMed Google Scholar
Gournier, H., Stenmark, H., Rybin, V., Lippe, R. & Zerial, M. Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. EMBO J.17, 1930–1940 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mills, I.G., Jones, A.T. & Clague, M.J. Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Curr. Biol.8, 881–884 (1998). ArticleCASPubMed Google Scholar
Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature394, 494–498 (1998). ArticleCASPubMed Google Scholar
Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell. Biol.1, 249–252 (1999). ArticleCASPubMed Google Scholar
Li, G. et al. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc. Natl. Acad. Sci. USA92, 10207–10211 (1995). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, E. et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol.151, 601–612 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fouraux, M.A. et al. Rabip4′ is an effector of rab5 and rab4 and regulates transport through early endosomes. Mol. Biol. Cell15, 611–624 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell116, 445–456 (2004). ArticleCASPubMed Google Scholar
Rubino, M., Miaczynska, M., Lippe, R. & Zerial, M. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem.275, 3745–3748 (2000). ArticleCASPubMed Google Scholar
Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol. Biol. Cell12, 2219–2228 (2001). ArticleCASPubMedPubMed Central Google Scholar
Maheshwar, M.M. et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum. Mol. Genet.6, 1991–1996 (1997). ArticleCASPubMed Google Scholar
Xiao, G.H., Shoarinejad, F., Jin, F., Golemis, E.A. & Yeung, R.S. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem.272, 6097–6100 (1997). ArticleCASPubMed Google Scholar
Shiba, Y., Takatsu, H., Shin, H.W. & Nakayama, K. γ-Adaptin interacts directly with Rabaptin-5 through its ear domain. J. Biochem.131, 327–336 (2002). ArticleCASPubMed Google Scholar
Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J.17, 1941–1951 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5–Rabex-5 complex. EMBO J.22, 78–88 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhu, G. et al. Crystal structure of the human GGA1 GAT domain. Biochemistry42, 6392–6399 (2003). ArticleCASPubMed Google Scholar
Zhu, G. et al. High-resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. J. Biol. Chem.278, 2452–2460 (2003). ArticleCASPubMed Google Scholar
Terzyan, S., Zhu, G., Li, G. & Zhang, X.C. Refinement of the structure of human Rab5a GTPase domain at 1.05 Å resolution. Acta Crystallogr. D60, 54–60 (2004). ArticlePubMed Google Scholar
Bucci, C. et al. Co-operative regulation of endocytosis by three Rab5 isoforms. FEBS Lett.366, 65–71 (1995). ArticleCASPubMed Google Scholar
Li, G. & Liang, Z. Phosphate-binding loop and Rab GTPase function: mutations at Ser29 and Ala30 of Rab5 lead to loss-of-function as well as gain-of-function phenotype. Biochem. J.355, 681–689 (2001). ArticleCASPubMedPubMed Central Google Scholar
Galperin, E. & Sorkin, A. Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis. J. Cell Sci.116, 4799–4810 (2003). ArticleCASPubMed Google Scholar
Rak, A. et al. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science302, 646–650 (2003). ArticleCASPubMed Google Scholar
Merithew, E., Stone, C., Eathiraj, S. & Lambright, D.G. Determinants of Rab5 interaction with the N terminus of early endosome antigen 1. J. Biol. Chem.278, 8494–8500 (2003). ArticleCASPubMed Google Scholar
Wu, M., Lu, L., Hong, W. & Song, H. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat. Struct. Mol. Biol.11, 86–94 (2004). ArticleCASPubMed Google Scholar
Dumas, J.J. et al. Multivalent endosome targeting by homodimeric EEA1. Mol. Cell8, 947–958 (2001). ArticleCASPubMed Google Scholar
Ostermeier, C. & Brunger, A.T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell96, 363–374 (1999). ArticleCASPubMed Google Scholar
Stroupe, C. & Brunger, A.T. Crystal structures of a Rab protein in its inactive and active conformations. J. Mol. Biol.304, 585–598 (2000). ArticleCASPubMed Google Scholar
Pasqualato, S. et al. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J. Biol. Chem.279, 11480–11488 (2003). ArticlePubMed Google Scholar
Chattopadhyay, D. et al. Structure of the nucleotide-binding domain of Plasmodium falciparum rab6 in the GDP-bound form. Acta Crystallogr. D56, 937–944 (2000). ArticleCASPubMed Google Scholar
Constantinescu, A.T. et al. Rab-subfamily-specific regions of Ypt7p are structurally different from other RabGTPases. Structure10, 569–579 (2002). ArticleCASPubMed Google Scholar
Amor, J.C., Harrison, D.H., Kahn, R.A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature372, 704–708 (1994). ArticleCASPubMed Google Scholar
Greasley, S.E. et al. The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms. Nat. Struct. Biol.2, 797–806 (1995). ArticleCASPubMed Google Scholar
Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature374, 378–381 (1995). ArticleCASPubMed Google Scholar
Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell95, 237–248 (1998). ArticleCASPubMed Google Scholar
Nikolova, L. et al. Conformationally variable Rab protein surface regions mapped by limited proteolysis and homology modelling. Biochem. J.336, 461–469 (1998). ArticleCASPubMedPubMed Central Google Scholar
Seabra, M.C., Goldstein, J.L., Sudhof, T.C. & Brown, M.S. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J. Biol. Chem.267, 14497–14503 (1992). CASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCASPubMed Google Scholar
Roussel, A. & Cambillau, C. TURBO-FRODO. In Silicon Graphics Geometry Partners Directory 77–79 (Silicon Graphics, Mountain View, California, USA, 1989). Google Scholar
Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D54, 487–493 (1998). ArticleCASPubMed Google Scholar
Hahn, C.S., Hahn, Y.S., Braciale, T.J. & Rice, C.M. Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc. Natl. Acad. Sci. USA89, 2679–2683 (1992). ArticleCASPubMedPubMed Central Google Scholar
Li, G. & Stahl, P.D. Structure-function relationship of the small GTPase Rab5. J. Biol. Chem.268, 24475–24480 (1993). CASPubMed Google Scholar
Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946–950 (1991). Article Google Scholar
Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0:a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994). ArticleCASPubMed Google Scholar
Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng.6, 37–40 (1993). ArticleCASPubMed Google Scholar
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association:insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCASPubMed Google Scholar