Substrate-assisted catalysis of peptide bond formation by the ribosome (original) (raw)

References

  1. Rodnina, M.V. & Wintermeyer, W. Peptide bond formation on the ribosome: structure and mechanism. Curr. Opin. Struct. Biol. 13, 334–340 (2003).
    Article CAS Google Scholar
  2. Schmeing, T.M. et al. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat. Struct. Biol. 9, 225–230 (2002).
    CAS PubMed Google Scholar
  3. Bruice, T.C. & Fife, T.H. Hydroxyl group catalysis 3. Nature of neighboring hydroxyl group assistance in alkaline hydrolysis of ester bond. J. Am. Chem. Soc. 84, 1973–1979 (1962).
    Article CAS Google Scholar
  4. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).
    Article CAS Google Scholar
  5. Muth, G.W., Ortoleva-Donnelly, L. & Strobel, S.A. A single adenosine with a neutral pK(a) in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).
    Article CAS Google Scholar
  6. Polacek, N., Gaynor, M., Yassin, A. & Mankin, A.S. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501 (2001).
    Article CAS Google Scholar
  7. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).
    Article CAS Google Scholar
  8. Beringer, M., Adio, S., Wintermeyer, W. & Rodnina, M. The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9, 919–922 (2003).
    Article CAS Google Scholar
  9. Thompson, J. et al. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc. Natl. Acad. Sci. USA 98, 9002–9007 (2001).
    Article CAS Google Scholar
  10. Sievers, A., Beringer, M., Rodnina, M.V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl. Acad. Sci. USA 101, 7897–7901 (2004).
    Article CAS Google Scholar
  11. Hecht, S.M., Kozarich, J.W. & Schmidt, F.J. Isomeric phenylalanyl-transfer-RNAs—position of aminoacyl moiety during protein-biosynthesis. Proc. Natl. Acad. Sci. USA 71, 4317–4321 (1974).
    Article CAS Google Scholar
  12. Wagner, T., Cramer, F. & Sprinzl, M. Activity of the 2′ and 3′ isomers of aminoacyl transfer ribonucleic-acid in the in vitro peptide elongation on Escherichia coli ribosomes. Biochemistry 21, 1521–1529 (1982).
    Article CAS Google Scholar
  13. Wagner, T. & Sprinzl, M. Inhibition of ribosomal translocation by peptidyl transfer ribonucleic-acid analogs. Biochemistry 22, 94–98 (1983).
    Article CAS Google Scholar
  14. Quiggle, K., Kumar, G., Ott, T.W., Ryu, E.K. & Chladek, S. Amindacyl derivates of nucleosides, nucleotides and polynucleotides 34. Donor site of ribosomal peptidyltransferase - investigation of substrate-specificity using 2′(3′)-_O_-(_N_-acylaminoacyl)dinucleoside phosphates as models of the 3′ terminus of _N_-acylaminoacyl transfer ribonucleic-acid. Biochemistry 20, 3480–3485 (1981).
    Article CAS Google Scholar
  15. Dorner, S., Panuschka, C., Schmid, W. & Barta, A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity. Nucleic Acids Res. 31, 6536–6542 (2003).
    Article CAS Google Scholar
  16. Griffin, B.E. & Reese, C.B. Some observations on mechanism of acylation process in protein synthesis. Proc. Natl. Acad. Sci. USA 51, 440–444 (1964).
    Article CAS Google Scholar
  17. Hansen, J.L., Schmeing, T.M., Moore, P.B. & Steitz, T.A. Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99, 11670–11675 (2002).
    Article CAS Google Scholar
  18. Das, G.K., Bhattacharyya, D. & Burma, D.P. A possible mechanism of peptide bond formation on ribosome without mediation of peptidyl transferase. J. Theor. Biol. 200, 193–205 (1999).
    Article CAS Google Scholar
  19. Chamberlin, S.I., Merino, E.J. & Weeks, K.M. Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups. Proc. Natl. Acad. Sci. USA 99, 14688–14693 (2002).
    Article CAS Google Scholar
  20. Katunin, V.I., Muth, G.W., Strobel, S.A., Wintermeyer, W. & Rodnina, M.V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002).
    Article CAS Google Scholar
  21. Sprinzl, M. & Sternbach, H. Enzymic modification of the C-C-A terminus of tRNA. 59, 182–190 (1979).
  22. Fredrick, K. & Noller, H.F. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).
    Article CAS Google Scholar
  23. Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. 57, 585–597 (1989).
  24. Strobel, S.A. & Ortoleva-Donnelly, L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem. Biol. 6, 153–165 (1999).
    Article CAS Google Scholar
  25. Herschlag, D., Eckstein, F. & Cech, T.R. Contributions of 2′-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme—n energetic picture of an active-site composed of RNA. Biochemistry 32, 8299–8311 (1993).
    Article CAS Google Scholar
  26. Herschlag, D., Eckstein, F. & Cech, T.R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry 32, 8312–8321 (1993).
    Article CAS Google Scholar
  27. Hocquet, A., Leulliot, N. & Ghomi, M. Ground-state properties of nucleic acid constituents studied by density functional calculations. 3. Role of sugar puckering and base orientation on the energetics and geometry of 2′-deoxyribonucleosides and ribonucleosides. J. Phys. Chem. B 104, 4560–4568 (2000).
    Article CAS Google Scholar
  28. Uesugi, S., Miki, H., Ikehara, M., Iwahashi, H. & Kyogoku, Y. Linear relationship between electronegativity of 2′-substituents and conformation of adenine nucleosides. Tetrahedron Lett. 20, 4073–4076 (1979).
    Article Google Scholar
  29. Sjogren, A.S., Pettersson, E., Sjoberg, B.M. & Stromberg, R. Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res. 25, 648–653 (1997).
    Article CAS Google Scholar
  30. Shan, S.O. & Herschlag, D. Probing the role of metal ions in RNA catalysis: Kinetic and thermodynamic characterization of a metal ion interaction with the 2′-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry 38, 10958–10975 (1999).
    Article CAS Google Scholar
  31. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J. & Strobel, S.A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004).
    Article CAS Google Scholar
  32. Bass, B.L. & Cech, T.R. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry 25, 4473–4477 (1986).
    Article CAS Google Scholar
  33. Moran, S., Kierzek, R. & Turner, D.H. Binding of guanosine and 3′ splice site analogs to a group-I ribozyme—interactions with functional-groups of guanosine and with additional nucleotides. Biochemistry 32, 5247–5256 (1993).
    Article CAS Google Scholar
  34. Nakano, S., Chadalavada, D.M. & Bevilacqua, P.C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000).
    Article CAS Google Scholar
  35. Perrotta, A.T., Shih, I.H. & Been, M.D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999).
    Article CAS Google Scholar
  36. Bevilacqua, P.C., Brown, T.S., Nakano, S. & Yajima, R. Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 73, 90–109 (2004).
    Article CAS Google Scholar
  37. Dall'Acqua, W. & Carter, P. Substrate-assisted catalysis: Molecular basis and biological significance. Protein Sci. 9, 1–9 (2000).
    Article CAS Google Scholar
  38. Carter, P. & Wells, J.A. Engineering enzyme specificity by substrate-assisted catalysis. Science 237, 394–399 (1987).
    Article CAS Google Scholar
  39. Woese, C.R. Tanslation: In retrospect and prospect. RNA 7, 1055–1067 (2001).
    Article CAS Google Scholar
  40. Zakharova, O.D. et al. Structural constraints in the HIV-1 reverse trancriptase-primer/template complex for the initiation of DNA synthesis from primer tRNA(Lys3). Biochemistry 37, 13343–13348 (1998).
    Article CAS Google Scholar
  41. Pawlik, R.T., Littlechild, J., Pon, C. & Gualerzi, C. Purification and properties of Escherichia-coli translational initiation-factors. Biochemistry Int. 2, 421–428 (1981).
    CAS Google Scholar
  42. Schmitt, E., Mechulam, Y., Fromant, M., Plateau, P. & Blanquet, S. Crystal structure at 1.2 angstrom resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J. 16, 4760–4769 (1997).
    Article CAS Google Scholar
  43. Moazed, D. & Noller, H.F. Sites of interaction of the CCA end of peptidyl-transfer RNA with 23s ribosomal-RNA. Proc. Natl. Acad. Sci. USA 88, 3725–3728 (1991).
    Article CAS Google Scholar

Download references