- Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).
Article CAS Google Scholar
- Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).
Article CAS Google Scholar
- Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M. & Teplow, D.B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372 (1997).
Article CAS Google Scholar
- Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).
Article CAS Google Scholar
- Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).
Article CAS Google Scholar
- Conway, K.A., Harper, J.D. & Lansbury, P.T., Jr. Fibrils formed in vitro from αsynuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563 (2000).
Article CAS Google Scholar
- Conway, K.A. et al. Accelerated oligomerization by Parkinson's disease linked αsynuclein mutants. Ann. NY Acad. Sci. 920, 42–45 (2000).
Article CAS Google Scholar
- Rochet, J.C., Conway, K.A. & Lansbury, P.T., Jr. Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse α-synuclein. Biochemistry 39, 10619–10626 (2000).
Article CAS Google Scholar
- Ding, T.T., Lee, S.J., Rochet, J.C. & Lansbury, P.T. Jr. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41, 10209–10217 (2002).
Article CAS Google Scholar
- The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).
- Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloidlike protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).
Article CAS Google Scholar
- Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).
Article CAS Google Scholar
- Muchowski, P.J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35, 9–12 (2002). 24
Article CAS Google Scholar
- Muchowski, P.J. et al. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846 (2000).
Article CAS Google Scholar
- Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604–4609 (1999).
Article CAS Google Scholar
- Fewell, S.W., Day, B.W. & Brodsky, J.L. Identification of an inhibitor of hsc70- mediated protein translocation and ATP hydrolysis. J. Biol. Chem. 276, 910–914 (2001).
Article CAS Google Scholar
- Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).
Article CAS Google Scholar
- Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L. & Bonini, N.M. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9, 2811–2820 (2000).
Article CAS Google Scholar
- Giasson, B.I. et al. Initiation and synergistic fibrillization of τ and α-synuclein. Science 300, 636–640 (2003).
Article CAS Google Scholar
- Poirier, M.A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).
Article CAS Google Scholar
- Tanaka, M. et al. Expansion of polyglutamine induces the formation of quasiaggregate in the early stage of protein fibrillization. J. Biol. Chem. 278, 34717–34724 (2003).
Article CAS Google Scholar
- Chen, S., Ferrone, F.A. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99, 11884–11889 (2002).
Article CAS Google Scholar
- Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of selfreplicating Sup35 prion conformers. Science 304, 1793–1797 (2004).
Article CAS Google Scholar
- Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994).
Article CAS Google Scholar
- Sugars, K.L. & Rubinsztein, D.C. Transcriptional abnormalities in Huntington disease. Trends. Genet. 19, 233–238 (2003).
Article CAS Google Scholar
- Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).
Article CAS Google Scholar
- Stockel, J. & Hartl, F.U. Chaperonin-mediated de novo generation of prion protein aggregates. J. Mol. Biol. 313, 861–872 (2001).
Article CAS Google Scholar
- Meriin, A.B. et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004 (2002).
Article CAS Google Scholar
- Warrick, J.M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428 (1999).
Article CAS Google Scholar
- Kazemi-Esfarjani, P. & Benzer, S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837–1840 (2000).
Article CAS Google Scholar
- Cummings, C.J. et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518 (2001).
Article CAS Google Scholar
- Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M. & Bonini, N.M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868 (2002).
Article CAS Google Scholar
- Minami, Y., Hohfeld, J., Ohtsuka, K. & Hartl, F.U. Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J. Biol. Chem. 271, 19617–19624 (1996).
Article CAS Google Scholar
- Ko, J., Ou, S. & Patterson, P.H. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 56, 319–329 (2001).
Article CAS Google Scholar
- Collins, S.R., Douglass, A., Vale, R.D. & Weissman, J.S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, E321 (2004).
Article Google Scholar