Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection (original) (raw)

References

  1. Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).
    Article CAS Google Scholar
  2. Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).
    Article CAS Google Scholar
  3. Tatham, M.H. & Hay, R.T. Ubiquitin and ubiquitin-like modifiers: conserved mechanisms and diverse functions. Chemtracts Biochem. Mol. Biol. 16, 759–782 (2003).
    CAS Google Scholar
  4. Seeler, J.S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell. Biol. 4, 690–699 (2003).
    Article CAS Google Scholar
  5. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).
    Article CAS Google Scholar
  6. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
    Article CAS Google Scholar
  7. Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).
    Article CAS Google Scholar
  8. Takahashi, Y., Toh-e, A. & Kikuchi, Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275, 223–231 (2001).
    Article CAS Google Scholar
  9. Kotaja, N., Karvonen, U., Janne, O.A. & Palvimo, J.J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22, 5222–5234 (2002).
    Article CAS Google Scholar
  10. Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem. 277, 41311–41317 (2002).
    Article CAS Google Scholar
  11. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).
    Article CAS Google Scholar
  12. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).
    Article CAS Google Scholar
  13. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).
    Article CAS Google Scholar
  14. Liu, Q. et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J. Biol. Chem. 274, 16979–16987 (1999).
    Article CAS Google Scholar
  15. Ohi, M.D., Vander Kooi, C.W., Rosenberg, J.A., Chazin, W.J. & Gould, K.L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. Biol. 10, 250–255 (2003).
    Article CAS Google Scholar
  16. Tatham, M.H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).
    Article CAS Google Scholar
  17. Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).
    Article CAS Google Scholar
  18. Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T.K. & Melchior, F. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11, 984–991 (2004).
    Article CAS Google Scholar
  19. Jentsch, S. The ubiquitin-conjugation system. Annu. Rev. Genet. 26, 179–207 (1992).
    Article CAS Google Scholar
  20. Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A. & Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).
    Article CAS Google Scholar
  21. Saitoh, H., Pizzi, M.D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem. 277, 4755–4763 (2002).
    Article CAS Google Scholar
  22. Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378 (2004).
    Article CAS Google Scholar
  23. Canning, M., Boutell, C., Parkinson, J. & Everett, R.D. A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J. Biol. Chem. 279, 38160–38168 (2004).
    Article CAS Google Scholar
  24. Wu, X., Yen, L., Irwin, L., Sweeney, C. & Carraway, K.L., 3rd. Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol. Cell. Biol. 24, 7748–7757 (2004).
    Article CAS Google Scholar
  25. Siepmann, T.J., Bohnsack, R.N., Tokgoz, Z., Baboshina, O.V. & Haas, A.L. Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem. 278, 9448–9457 (2003).
    Article CAS Google Scholar
  26. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001).
    Article CAS Google Scholar
  27. Desterro, J.M., Thomson, J. & Hay, R.T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417, 297–300 (1997).
    Article CAS Google Scholar
  28. Jaffray, E., Wood, K.M. & Hay, R.T. Domain organization of IκBα and sites of interaction with NF-κB p65. Mol. Cell. Biol. 15, 2166–2172 (1995).
    Article CAS Google Scholar
  29. Pervushin, K. Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys. 33, 161–197 (2000).
    Article CAS Google Scholar
  30. Giraud, M.F., Desterro, J.M. & Naismith, J.H. Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr. D. 54, 891–898 (1998).
    Article CAS Google Scholar
  31. Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T.K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).
    Article CAS Google Scholar

Download references