Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection (original) (raw)
References
Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem.275, 6252–6258 (2000). ArticleCAS Google Scholar
Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem.276, 35368–35374 (2001). ArticleCAS Google Scholar
Tatham, M.H. & Hay, R.T. Ubiquitin and ubiquitin-like modifiers: conserved mechanisms and diverse functions. Chemtracts Biochem. Mol. Biol.16, 759–782 (2003). CAS Google Scholar
Seeler, J.S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell. Biol.4, 690–699 (2003). ArticleCAS Google Scholar
Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci.28, 612–618 (2003). ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell106, 735–744 (2001). ArticleCAS Google Scholar
Takahashi, Y., Toh-e, A. & Kikuchi, Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene275, 223–231 (2001). ArticleCAS Google Scholar
Kotaja, N., Karvonen, U., Janne, O.A. & Palvimo, J.J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol.22, 5222–5234 (2002). ArticleCAS Google Scholar
Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem.277, 41311–41317 (2002). ArticleCAS Google Scholar
Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science286, 1321–1326 (1999). ArticleCAS Google Scholar
Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell102, 533–539 (2000). ArticleCAS Google Scholar
Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell108, 109–120 (2002). ArticleCAS Google Scholar
Liu, Q. et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J. Biol. Chem.274, 16979–16987 (1999). ArticleCAS Google Scholar
Ohi, M.D., Vander Kooi, C.W., Rosenberg, J.A., Chazin, W.J. & Gould, K.L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. Biol.10, 250–255 (2003). ArticleCAS Google Scholar
Tatham, M.H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry42, 9959–9969 (2003). ArticleCAS Google Scholar
Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature376, 184–188 (1995). ArticleCAS Google Scholar
Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T.K. & Melchior, F. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol.11, 984–991 (2004). ArticleCAS Google Scholar
Jentsch, S. The ubiquitin-conjugation system. Annu. Rev. Genet.26, 179–207 (1992). ArticleCAS Google Scholar
Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A. & Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem.277, 47938–47945 (2002). ArticleCAS Google Scholar
Saitoh, H., Pizzi, M.D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem.277, 4755–4763 (2002). ArticleCAS Google Scholar
Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA101, 14373–14378 (2004). ArticleCAS Google Scholar
Canning, M., Boutell, C., Parkinson, J. & Everett, R.D. A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J. Biol. Chem.279, 38160–38168 (2004). ArticleCAS Google Scholar
Wu, X., Yen, L., Irwin, L., Sweeney, C. & Carraway, K.L., 3rd. Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol. Cell. Biol.24, 7748–7757 (2004). ArticleCAS Google Scholar
Siepmann, T.J., Bohnsack, R.N., Tokgoz, Z., Baboshina, O.V. & Haas, A.L. Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem.278, 9448–9457 (2003). ArticleCAS Google Scholar
Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev.15, 3088–3103 (2001). ArticleCAS Google Scholar
Desterro, J.M., Thomson, J. & Hay, R.T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett.417, 297–300 (1997). ArticleCAS Google Scholar
Jaffray, E., Wood, K.M. & Hay, R.T. Domain organization of IκBα and sites of interaction with NF-κB p65. Mol. Cell. Biol.15, 2166–2172 (1995). ArticleCAS Google Scholar
Pervushin, K. Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys.33, 161–197 (2000). ArticleCAS Google Scholar
Giraud, M.F., Desterro, J.M. & Naismith, J.H. Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr. D.54, 891–898 (1998). ArticleCAS Google Scholar
Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T.K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem.272, 21381–21387 (1997). ArticleCAS Google Scholar