- Maquat, L.E. & Carmichael, G.G. Quality control of mRNA function. Cell 104, 173–176 (2001).
Article CAS PubMed Google Scholar
- Samuel, C.E. Protein-nucleic acid interactions and cellular responses to interferon. Methods 15, 161–165 (1998).
Article CAS PubMed Google Scholar
- Zhou, A., Hassel, B.A. & Silverman, R.H. Expression cloning of 2–5A-dependent RNase: a uniquely regulated mediator of interferon action. Cell 72, 753–765 (1993).
Article CAS PubMed Google Scholar
- Silverman, R.H. 2–5A dependent RNase L: a regulated endoribonuclease in the interferon system. In Ribonucleases: Structure and Functions (eds. D'Alessio, G. & Riordan, J.F.) 515–551 (Academic Press, New York, 1997).
Chapter Google Scholar
- Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).
Article CAS PubMed Google Scholar
- Zamore, P.D. Ancient pathways programmed by small RNAs. Science 296, 1265–1269 (2002).
Article CAS PubMed Google Scholar
- Denli, A.M. & Hannon, G.J. RNAi: an ever growing puzzle. Trends Biochem. Sci. 28, 196–201 (2003).
Article CAS PubMed Google Scholar
- Novina, C.D. & Sharp, P.A. The RNAi revolution. Nature 430, 161–164 (2004).
Article CAS PubMed Google Scholar
- Nishikura, K. et al. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 10, 3523–3532 (1991).
- Polson, A.G. & Bass, B.L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 13, 5701–5711 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Serra, M.J., Smolter, P.E. & Westhof, E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res. 32, 1824–1828 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, Z. & Carmichael, G.G. The fate of dsRNA in the nucleus: a p54nrb-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465–475 (2001).
Article CAS PubMed Google Scholar
- Scadden, A.D.J. & Smith, C.W.J. Specific cleavage of hyper-edited dsRNAs. EMBO J. 20, 4243–4252 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).
Article CAS PubMed Google Scholar
- Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2: a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).
Article CAS PubMed Google Scholar
- Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Caudy, A.A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003).
Article CAS PubMed Google Scholar
- Meister, G. et al. Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).
Article CAS PubMed Google Scholar
- Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).
Article CAS PubMed Google Scholar
- Rand, T.A., Ginalski, K., Grishin, N.V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl. Acad. Sci. 101, 14385–14389 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Scadden, A.D.J. & Smith, C.W.J. RNAi is antagonized by A to I hyper-editing. EMBO Rep. 2, 1107–1111 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Knight, S.W. & Bass, B.L. The role of RNA editing by ADARs in RNAi. Mol. Cell 10, 809–817 (2002).
Article CAS PubMed Google Scholar
- Tonkin, L.A. & Bass, B.L. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302, 1725 (2003).
CAS PubMed PubMed Central Google Scholar
- Bass, B.L. Double-stranded RNA as a template for gene silencing. Cell 101, 235–238 (2000).
Article CAS PubMed Google Scholar
- Yang, W. et al. ADAR1 RNA deaminase limits siRNA efficacy in mammalian cells. J. Biol. Chem. 280, 3946–3953 (2005).
Article CAS PubMed Google Scholar
- Pharm, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W. & Sontheimer, E.J. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004).
Article Google Scholar
- Wollerton, M.C. et al. Differential alternative splicing activity of isoforms of polypyrimidine tract binding proteins (PTB). RNA 7, 819–832 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Cuatrecasas, P., Fuchs, S. & Anfinsen, C.B. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 242, 1541–1547 (1967).
CAS PubMed Google Scholar
- Ponting, C.P. Tudor domains in proteins that interact with RNA. Trends Biochem. Sci. 22, 51–52 (1997).
Article CAS PubMed Google Scholar
- Callebaut, I. & Mornon, J.P. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease fold and to the Tudor protein involved in Drosophila melanogaster development. Biochem. J. 321, 125–132 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Yang, J. et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J. 21, 4950–4958 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Luciano, D.J., Mirsky, H., Vendetti, N.J. & Mass, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).
Article CAS PubMed Google Scholar
- Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).
Google Scholar
- Minshall, N. & Standart, N. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res. 32, 1325–1334 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Körner, C.G. et al. The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of X. laevis oocytes. EMBO J. 17, 5427–5437 (1998).
Article PubMed PubMed Central Google Scholar