Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly (original) (raw)

References

  1. Dell'Angelica, E.C. & Payne, G.S. Intracellular cycling of lysosomal enzyme receptors: cytoplasmic tails' tales. Cell 106, 395–398 (2001).
    Article CAS Google Scholar
  2. Rouille, Y., Rohn, W. & Hoflack, B. Targeting of lysosomal proteins. Semin. Cell Dev. Biol. 11, 165–171 (2000).
    Article CAS Google Scholar
  3. Seaman, M.N., Marcusson, E.G., Cereghino, J.L. & Emr, S.D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997).
    Article CAS Google Scholar
  4. Seaman, M.N., McCaffery, J.M. & Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).
    Article CAS Google Scholar
  5. Seaman, M.N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).
    Article CAS Google Scholar
  6. Reddy, J.V. & Seaman, M.N. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell 12, 3242–3256 (2001).
    Article CAS Google Scholar
  7. Nothwehr, S.F., Ha, S.A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).
    Article CAS Google Scholar
  8. Nothwehr, S.F., Bruinsma, P. & Strawn, L.A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999).
    Article CAS Google Scholar
  9. Carlton, J., Bujny, M., Rutherford, A. & Cullen, P. Sorting nexins—unifying trends and new perspectives. Traffic 6, 75–82 (2005).
    Article CAS Google Scholar
  10. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).
    Article CAS Google Scholar
  11. Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).
    Article CAS Google Scholar
  12. Haft, C.R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).
    Article CAS Google Scholar
  13. Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R. & Bonifacino, J.S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).
    Article CAS Google Scholar
  14. Seaman, M.N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).
    Article CAS Google Scholar
  15. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769 (2004).
    Article CAS Google Scholar
  16. Holm, L. & Sander, C. Alignment of three-dimensional protein structures: network server for database searching. Methods Enzymol. 266, 653–662 (1996).
    Article CAS Google Scholar
  17. Barford, D., Das, A.K. & Egloff, M.P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27, 133–164 (1998).
    Article CAS Google Scholar
  18. Knofel, T. & Strater, N. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5′-nucleotidase based on crystal structures. J. Mol. Biol. 309, 239–254 (2001).
    Article CAS Google Scholar
  19. Hopfner, K.P. et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473–485 (2001).
    Article CAS Google Scholar
  20. Rusnak, F. & Mertz, P. Calcineurin: form and function. Physiol. Rev. 80, 1483–1521 (2000).
    Article CAS Google Scholar
  21. Zhuo, S., Clemens, J.C., Stone, R.L. & Dixon, J.E. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis. J. Biol. Chem. 269, 26234–26238 (1994).
    CAS PubMed Google Scholar
  22. Zhang, J., Zhang, Z., Brew, K. & Lee, E.Y. Mutational analysis of the catalytic subunit of muscle protein phosphatase–1. Biochemistry 35, 6276–6282 (1996).
    Article CAS Google Scholar
  23. Huang, H.B., Horiuchi, A., Goldberg, J., Greengard, P. & Nairn, A.C. Site-directed mutagenesis of amino acid residues of protein phosphatase 1 involved in catalysis and inhibitor binding. Proc. Natl. Acad. Sci. USA 94, 3530–3535 (1997).
    Article CAS Google Scholar
  24. Mertz, P., Yu, L., Sikkink, R. & Rusnak, F. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase. J. Biol. Chem. 272, 21296–21302 (1997).
    Article CAS Google Scholar
  25. Chen, S. et al. Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii . J. Biol. Chem. 279, 31854–31862 (2004).
    Article CAS Google Scholar
  26. Seaman, M.N. & Williams, H.P. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol. Biol. Cell 13, 2826–2840 (2002).
    Article CAS Google Scholar
  27. Wang, Y., Zhou, Y., Szabo, K., Haft, C.R. & Trejo, J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13, 1965–1976 (2002).
    Article CAS Google Scholar
  28. Powell, H.R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D 55, 1690–1695 (1999).
    Article CAS Google Scholar
  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
  30. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomolous diffraction methods. in Methods Enzymol. Vol. 472 (eds. Carter, C.W., Jr. & Sweet, R.M.) (Academic, New York, 1997).
    Google Scholar
  31. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).
    Article CAS Google Scholar
  32. Jones, T.A., Zou, J.Y., Cowen, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  33. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).
    Article CAS Google Scholar
  34. Lindqvist, Y., Johansson, E., Kaija, H., Vihko, P. & Schneider, G. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center. J. Mol. Biol. 291, 135–147 (1999).
    Article CAS Google Scholar
  35. Voegtli, W.C., White, D.J., Reiter, N.J., Rusnak, F. & Rosenzweig, A.C. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry 39, 15365–15374 (2000).
    Article CAS Google Scholar

Download references