Allez M, Tieng V, Nakazawa A, Treton X, Pacault V, Dulphy N et al. (2007). CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology132: 2346–2358. CASPubMed Google Scholar
Angel P, Szabowski A, Schorpp-Kistner M . (2001). Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene20: 2413–2423. CASPubMed Google Scholar
Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M et al. (2005). Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res65: 6321–6329. CASPubMed Google Scholar
Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J . (2004). Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol173: 1078–1084. CASPubMed Google Scholar
Bahram S, Bresnahan M, Geraghty DE, Spies T . (1994). A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA91: 6259–6263. CASPubMedPubMed Central Google Scholar
Bahram S, Inoko H, Shiina T, Radosavljevic M . (2005). MIC and other NKG2D ligands: from none to too many. Curr Opin Immunol17: 505–509. CASPubMed Google Scholar
Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ . (2005). Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol54: 369–377. CASPubMed Google Scholar
Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285: 727–729. ArticleCASPubMed Google Scholar
Boissel N, Rea D, Tieng V, Dulphy N, Brun M, Cayuela JM et al. (2006). BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J Immunol176: 5108–5116. CASPubMed Google Scholar
Borchers MT, Harris NL, Wesselkamper SC, Zhang S, Chen Y, Young L et al. (2006). The NKG2D-activating receptor mediates pulmonary clearance of Pseudomonas aeruginosa. Infect Immun74: 2578–2586. CASPubMedPubMed Central Google Scholar
Bravo MJ, Colmenero JD, Martin J, Alonso A, Caballero A . (2007). Polymorphism of the transmembrane region of the MICA gene and human brucellosis. Tissue Antigens69: 358–360. CASPubMed Google Scholar
Bryceson YT, March ME, Ljunggren HG, Long EO . (2006). Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood107: 159–166. CASPubMedPubMed Central Google Scholar
Bui JD, Carayannopoulos LN, Lanier LL, Yokoyama WM, Schreiber RD . (2006). IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J Immunol176: 905–913. CASPubMed Google Scholar
Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE . (2006). IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol176: 1490–1497. CASPubMed Google Scholar
Cao W, Xi X, Hao Z, Li W, Kong Y, Cui L et al. (2007). RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity. J Biol Chem282: 18922–18928. CASPubMed Google Scholar
Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM . (2002). Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol169: 4079–4083. CASPubMed Google Scholar
Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D et al. (2005). HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood105: 251–258. CASPubMed Google Scholar
Carlsten M, Bjorkstrom NK, Norell H, Bryceson Y, van Hall T, Baumann BC et al. (2007). DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res67: 1317–1325. CASPubMed Google Scholar
Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R et al. (2003). Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA100: 4120–4125. CASPubMedPubMed Central Google Scholar
Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B et al. (2007). Both CD133(+) and CD133(−) medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol37: 3190–3196. CASPubMed Google Scholar
Catellani S, Poggi A, Bruzzone A, Dadati P, Ravetti JL, Gobbi M et al. (2007). Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins. Blood109: 2078–2085. CASPubMed Google Scholar
Cerboni C, Zingoni A, Cippitelli M, Piccoli M, Frati L, Santoni A . (2007). Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis. Blood110: 606–615. CASPubMed Google Scholar
Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH et al. (2000). Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity12: 721–727. CASPubMed Google Scholar
Cerwenka A, Baron JL, Lanier LL . (2001). Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA98: 11521–11526. CASPubMedPubMed Central Google Scholar
Cerwenka A, Lanier LL . (2001). Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev181: 158–169. CASPubMed Google Scholar
Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D . (2003). ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun305: 129–135. PubMed Google Scholar
Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M et al. (2006). Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med12: 207–213. CASPubMed Google Scholar
Chang C, Dietrich J, Harpur AG, Lindquist JA, Haude A, Loke Y et al. (1999). Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J Immunol163: 4651–4654. CASPubMed Google Scholar
Choi BK, Kim YH, Kang WJ, Lee SK, Kim KH, Shin SM et al. (2007). Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res67: 8891–8899. CASPubMed Google Scholar
Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. (2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity14: 123–133. CASPubMed Google Scholar
Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al. (2005). Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood106: 1711–1717. CASPubMed Google Scholar
Dasgupta S, Bhattacharya-Chatterjee M, O’Malley Jr BW, Chatterjee SK . (2005). Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol175: 5541–5550. CASPubMed Google Scholar
Diefenbach A, Hsia JK, Hsiung MY, Raulet DH . (2003). A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol33: 381–391. CASPubMed Google Scholar
Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH . (2000). Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol1: 119–126. CASPubMed Google Scholar
Diefenbach A, Jensen ER, Jamieson AM, Raulet DH . (2001). Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature413: 165–171. CASPubMedPubMed Central Google Scholar
Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E et al. (2002). Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol3: 1142–1149. CASPubMed Google Scholar
Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. (2007). NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK cell lines with single KIR-HLA-class I specificities. Blood111: 1428–1436. PubMed Google Scholar
Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B et al. (2003). Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol171: 6891–6899. CASPubMed Google Scholar
Eagle RA, Trowsdale J . (2007). Promiscuity and the single receptor: NKG2D. Nat Rev Immunol7: 737–744. CASPubMed Google Scholar
Ehrlich LI, Ogasawara K, Hamerman JA, Takaki R, Zingoni A, Allison JP et al. (2005). Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J Immunol174: 1922–1931. CASPubMed Google Scholar
Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A et al. (2006). TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain129: 2416–2425. PubMed Google Scholar
El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW et al. (2007). The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res67: 8444–8449. CASPubMed Google Scholar
Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F et al. (2003). MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res63: 8996–9006. CASPubMed Google Scholar
Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A et al. (2004). RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res64: 7596–7603. CASPubMed Google Scholar
Garrity D, Call ME, Feng J, Wucherpfennig KW . (2005). The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci USA102: 7641–7646. CASPubMedPubMed Central Google Scholar
Gasser S, Orsulic S, Brown EJ, Raulet DH . (2005). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature436: 1186–1190. CASPubMedPubMed Central Google Scholar
Germain C, Larbouret C, Cesson V, Donda A, Held W, Mach JP et al. (2005). MHC class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin Cancer Res11: 7516–7522. CASPubMed Google Scholar
Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N et al. (2005). CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med202: 1075–1085. CASPubMedPubMed Central Google Scholar
Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M . (2002). NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol3: 1150–1155. CASPubMed Google Scholar
Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R et al. (2001). Regulation of cutaneous malignancy by gammadelta T cells. Science294: 605–609. CASPubMed Google Scholar
Glienke J, Sobanov Y, Brostjan C, Steffens C, Nguyen C, Lehrach H et al. (1998). The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics48: 163–173. CASPubMed Google Scholar
Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T . (1996). Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA93: 12445–12450. CASPubMedPubMed Central Google Scholar
Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T . (2003). Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA100: 9452–9457. CASPubMedPubMed Central Google Scholar
Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T . (1999). Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA96: 6879–6884. CASPubMedPubMed Central Google Scholar
Groh V, Smythe K, Dai Z, Spies T . (2006). Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nat Immunol7: 755–762. CASPubMed Google Scholar
Groh V, Wu J, Yee C, Spies T . (2002). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature419: 734–738. CASPubMed Google Scholar
Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N et al. (2008). NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity28: 571–580. CASPubMedPubMed Central Google Scholar
Guilloton F, de Thonel A, Jean C, Demur C, Mansat-De Mas V, Laurent G et al. (2005). TNFalpha stimulates NKG2D-mediated lytic activity of acute myeloid leukemic cells. Leukemia19: 2206–2214. CASPubMed Google Scholar
Gumireddy K, Sun F, Klein-Szanto AJ, Gibbins JM, Gimotty PA, Saunders AJ et al. (2008). In vivo selection for metastasis promoting genes in the mouse. Proc Natl Acad Sci USA104: 6696–6701. Google Scholar
Hamerman JA, Ogasawara K, Lanier LL . (2004). Cutting edge: toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol172: 2001–2005. CASPubMed Google Scholar
Hamerman JA, Ogasawara K, Lanier LL . (2005). NK cells in innate immunity. Curr Opin Immunol17: 29–35. CASPubMed Google Scholar
Ho EL, Heusel JW, Brown MG, Matsumoto K, Scalzo AA, Yokoyama WM . (1998). Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc Natl Acad Sci USA95: 6320–6325. CASPubMedPubMed Central Google Scholar
Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . (2006a). Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother55: 1584–1589. PubMed Google Scholar
Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . (2006b). Soluble MICA in malignant diseases. Int J Cancer118: 684–687. CASPubMed Google Scholar
Horng T, Bezbradica JS, Medzhitov R . (2007). NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat Immunol8: 1345–1352. CASPubMed Google Scholar
Houchins JP, Yabe T, McSherry C, Bach FH . (1991). DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med173: 1017–1020. CASPubMed Google Scholar
Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J et al. (2004). A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity21: 367–377. PubMed Google Scholar
Jack A, Boyes C, Aydin N, Alam K, Wallack M . (2006). The treatment of melanoma with an emphasis on immunotherapeutic strategies. Surg Oncol15: 13–24. PubMed Google Scholar
Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH . (2002). The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity17: 19–29. CASPubMed Google Scholar
Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, Spies T et al. (2003a). Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol170: 1249–1256. CASPubMed Google Scholar
Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S et al. (2005). Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol43: 1013–1020. CASPubMed Google Scholar
Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T et al. (2003b). Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer104: 354–361. CASPubMed Google Scholar
Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA105: 1285–1290. CASPubMedPubMed Central Google Scholar
Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH et al. (2007). Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature447: 482–486. CASPubMed Google Scholar
Kriegeskorte AK, Gebhardt FE, Porcellini S, Schiemann M, Stemberger C, Franz TJ et al. (2005). NKG2D-independent suppression of T cell proliferation by H60 and MICA. Proc Natl Acad Sci USA102: 11805–11810. CASPubMedPubMed Central Google Scholar
Lee JC, Lee KM, Kim DW, Heo DS . (2004). Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol172: 7335–7340. CASPubMed Google Scholar
Li J, Rabinovich BA, Hurren R, Cosman D, Miller RG . (2005). Survival versus neglect: redefining thymocyte subsets based on expression of NKG2D ligand(s) and MHC class I. Eur J Immunol35: 439–448. CASPubMed Google Scholar
Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR et al. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood109: 4336–4342. CASPubMedPubMed Central Google Scholar
Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A . (2007). Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity26: 503–517. CASPubMedPubMed Central Google Scholar
Maccalli C, Pende D, Castelli C, Mingari MC, Robbins PF, Parmiani G . (2003). NKG2D engagement of colorectal cancer-specific T cells strengthens TCR-mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur J Immunol33: 2033–2043. CASPubMed Google Scholar
Malarkannan S, Shih PP, Eden PA, Horng T, Zuberi AR, Christianson G et al. (1998). The molecular and functional characterization of a dominant minor H antigen, H60. J Immunol161: 3501–3509. CASPubMed Google Scholar
Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J . (2006). Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer119: 2359–2365. PubMed Google Scholar
Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN et al. (2004). Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity21: 357–366. CASPubMed Google Scholar
Mistry AR, O’Callaghan CA . (2007). Regulation of ligands for the activating receptor NKG2D. Immunology121: 439–447. CASPubMedPubMed Central Google Scholar
Molinero LL, Fuertes MB, Rabinovich GA, Fainboim L, Zwirner NW . (2002). Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28. J Leukoc Biol71: 791–797. CASPubMed Google Scholar
Molinero LL, Fuertes MB, Girart MV, Fainboim L, Rabinovich GA, Costas MA et al. (2004). NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes. J Immunol173: 5583–5590. CASPubMed Google Scholar
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314: 126–129. CASPubMedPubMed Central Google Scholar
Nausch N, Florin L, Hartenstein B, Angel P, Schorpp-Kistner M, Cerwenka A . (2006). Cutting edge: the AP-1 subunit JunB determines NK cell-mediated target cell killing by regulation of the NKG2D-ligand RAE-1epsilon. J Immunol176: 7–11. CASPubMed Google Scholar
Nedvetzki S, Sowinski S, Eagle RA, Harris J, Vely F, Pende D et al. (2007). Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood109: 3776–3785. CASPubMed Google Scholar
Nomura M, Zou Z, Joh T, Takihara Y, Matsuda Y, Shimada K . (1996). Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J Biochem (Tokyo)120: 987–995. CAS Google Scholar
Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. (2005). Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood105: 3615–3622. CASPubMed Google Scholar
O’Callaghan CA, Cerwenka A, Willcox BE, Lanier LL, Bjorkman PJ . (2001). Molecular competition for NKG2D: H60 and RAE1 compete unequally for NKG2D with dominance of H60. Immunity15: 201–211. PubMed Google Scholar
Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL . (2005). Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat Immunol6: 938–945. CASPubMedPubMed Central Google Scholar
Ogasawara K, Lanier LL . (2005). NKG2D in NK and T cell-mediated immunity. J Clin Immunol25: 534–540. CASPubMed Google Scholar
Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE et al. (2005). Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol6: 928–937. CASPubMed Google Scholar
Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V et al. (2000). Loss-of-function mutations in TyroBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet25: 357–361. CASPubMed Google Scholar
Pappworth IY, Wang EC, Rowe M . (2007). The switch from latent to productive infection in Epstein–Barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol81: 474–482. CASPubMed Google Scholar
Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R et al. (2002). Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res62: 6178–6186. CASPubMed Google Scholar
Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP . (2004). Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol172: 1009–1017. CASPubMed Google Scholar
Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M et al. (2004). Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res64: 9172–9179. CASPubMed Google Scholar
Rabinovich B, Li J, Wolfson M, Lawrence W, Beers C, Chalupny J et al. (2006). NKG2D splice variants: a reexamination of adaptor molecule associations. Immunogenetics58: 81–88. CASPubMed Google Scholar
Rabinovich BA, Li J, Shannon J, Hurren R, Chalupny J, Cosman D et al. (2003). Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells. J Immunol170: 3572–3576. CASPubMed Google Scholar
Radosavljevic M, Cuillerier B, Wilson MJ, Clement O, Wicker S, Gilfillan S et al. (2002). A cluster of ten novel MHC class I related genes on human chromosome 6q24.2–q25.3. Genomics79: 114–123. CASPubMed Google Scholar
Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C et al. (2004). Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia6: 558–568. CASPubMedPubMed Central Google Scholar
Rausch A, Hessmann M, Holscher A, Schreiber T, Bulfone-Paus S, Ehlers S et al. (2006). Interleukin-15 mediates protection against experimental tuberculosis: a role for NKG2D-dependent effector mechanisms of CD8+ T cells. Eur J Immunol36: 1156–1167. CASPubMed Google Scholar
Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC et al. (2001). NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol167: 5527–5530. CASPubMed Google Scholar
Roda-Navarro P, Reyburn HT . (2007). Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J21: 1636–1646. CASPubMed Google Scholar
Roda-Navarro P, Vales-Gomez M, Chisholm SE, Reyburn HT . (2006). Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function. Proc Natl Acad Sci USA103: 11258–11263. CASPubMedPubMed Central Google Scholar
Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A . (2007). Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res31: 1393–1402. CASPubMed Google Scholar
Roos WP, Kaina B . (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med12: 440–450. CASPubMed Google Scholar
Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL . (2004). A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol173: 2470–2478. CASPubMed Google Scholar
Routes JM, Ryan S, Morris K, Takaki R, Cerwenka A, Lanier LL . (2005). Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. J Exp Med202: 1477–1482. CASPubMedPubMed Central Google Scholar
Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. (2003). Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood102: 1389–1396. CASPubMed Google Scholar
Salih HR, Goehlsdorf D, Steinle A . (2006). Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol67: 188–195. CASPubMed Google Scholar
Salih HR, Rammensee HG, Steinle A . (2002). Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol169: 4098–4102. CASPubMed Google Scholar
Schrambach S, Ardizzone M, Leymarie V, Sibilia J, Bahram S . (2007). In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS ONE2: e518. PubMedPubMed Central Google Scholar
Siren J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I et al. (2004). Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol85: 2357–2364. CASPubMed Google Scholar
Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y . (2005). NKG2D function protects the host from tumor initiation. J Exp Med202: 583–588. CASPubMedPubMed Central Google Scholar
Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A et al. (2004). NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med200: 1325–1335. CASPubMedPubMed Central Google Scholar
Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y . (2006). CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol176: 1582–1587. CASPubMed Google Scholar
Song H, Hur DY, Kim KE, Park H, Kim T, Kim C et al. (2006b). IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun _N_-terminal kinase (JNK) pathway. Cell Immunol242: 39–45. CASPubMed Google Scholar
Song H, Kim J, Cosman D, Choi I . (2006a). Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol239: 22–30. CASPubMed Google Scholar
Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK et al. (2001). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics53: 279–287. CASPubMed Google Scholar
Strong RK . (2002). Asymmetric ligand recognition by the activating natural killer cell receptor NKG2D, a symmetric homodimer. Mol Immunol38: 1029–1037. CASPubMed Google Scholar
Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M et al. (2006). A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med12: 214–219. CASPubMed Google Scholar
Takada A, Yoshida S, Kajikawa M, Miyatake Y, Tomaru U, Sakai M et al. (2008). Two novel NKG2D ligands of the mouse H60 family with differential expression patterns and binding affinities to NKG2D. J Immunol180: 1678–1685. CASPubMed Google Scholar
Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ et al. (2005). IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol175: 2167–2173. CASPubMed Google Scholar
Tallman MS . (2006). New agents for the treatment of acute myeloid leukemia. Best Pract Res Clin Haematol19: 311–320. CASPubMed Google Scholar
Teng MW, Kershaw MH, Hayakawa Y, Cerutti L, Jane SM, Darcy PK et al. (2005). T cells gene-engineered with DAP12 mediate effector function in an NKG2D-dependent and major histocompatibility complex-independent manner. J Biol Chem280: 38235–38241. CASPubMed Google Scholar
Tieng V, Le Bouguenec C, du Merle L, Bertheau P, Desreumaux P, Janin A et al. (2002). Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc Natl Acad Sci USA99: 2977–2982. CASPubMedPubMed Central Google Scholar
Turkcapar N, Tuncali T, Kutlay S, Burhan BY, Kinikli G, Erturk S et al. (2007). The contribution of genotypes at the MICA gene triplet repeat polymorphisms and MEFV mutations to amyloidosis and course of the disease in the patients with familial Mediterranean fever. Rheumatol Int27: 545–551. CASPubMed Google Scholar
Venkataraman GM, Suciu D, Groh V, Boss JM, Spies T . (2007). Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J Immunol178: 961–969. CASPubMed Google Scholar
Verneris MR, Karami M, Baker J, Jayaswal A, Negrin RS . (2004). Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood103: 3065–3072. CASPubMed Google Scholar
Vetter CS, Groh V, thor Straten P, Spies T, Brocker EB, Becker JC . (2002). Expression of stress-induced MHC class I related chain molecules on human melanoma. J Invest Dermatol118: 600–605. CASPubMed Google Scholar
Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, Baron JL . (2007). Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci USA104: 18187–18192. CASPubMedPubMed Central Google Scholar
Vosshenrich CA, Lesjean-Pottier S, Hasan M, Richard-Le Goff O, Corcuff E, Mandelboim O et al. (2007). CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells. J Exp Med204: 2569–2578. CASPubMedPubMed Central Google Scholar
Waldhauer I, Steinle A . (2006). Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res66: 2520–2526. CASPubMed Google Scholar
Ward J, Bonaparte M, Sacks J, Guterman J, Fogli M, Mavilio D et al. (2007). HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood110: 1207–1214. CASPubMedPubMed Central Google Scholar
Watson NF, Spendlove I, Madjd Z, McGilvray R, Green AR, Ellis IO et al. (2006). Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer118: 1445–1452. CASPubMed Google Scholar
Weizman N, Shiloh Y, Barzilai A . (2003). Contribution of the Atm protein to maintaining cellular homeostasis evidenced by continuous activation of the AP-1 pathway in Atm-deficient brains. J Biol Chem278: 6741–6747. CASPubMed Google Scholar
Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T et al. (2005). Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol175: 720–729. CASPubMed Google Scholar
Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL et al. (1999). An activating immunoreceptor complex formed by NKG2D and DAP10. Science285: 730–732. CASPubMed Google Scholar
Yokoyama WM . (2002). Immunology: catch us if you can. Nature419: 679–680. CASPubMed Google Scholar
Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z . (2005a). Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptors: negative regulation of IFNgamma on NK cells. Int Immunopharmacol5: 1057–1067. CASPubMed Google Scholar
Zhang J, Sun R, Wei H, Tian Z . (2004). Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica89: 338–347. CASPubMed Google Scholar
Zhang T, Barber A, Sentman CL . (2007). Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways. Cancer Res67: 11029–11036. CASPubMed Google Scholar
Zhang T, Lemoi BA, Sentman CL . (2005b). Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood106: 1544–1551. CASPubMedPubMed Central Google Scholar
Zhou H, Luo Y, Kaplan CD, Kruger JA, Lee SH, Xiang R et al. (2006). A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood107: 3251–3257. CASPubMedPubMed Central Google Scholar
Zhou H, Luo Y, Lo JF, Kaplan CD, Mizutani M, Mizutani N et al. (2005). DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc Natl Acad Sci USA102: 10846–10851. CASPubMedPubMed Central Google Scholar
Zou Z, Nomura M, Takihara Y, Yasunaga T, Shimada K . (1996). Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules. J Biochem (Tokyo)119: 319–328. CAS Google Scholar