Caspase-independent cell death: leaving the set without the final cut (original) (raw)
Abraham MC, Lu Y, Shaham S . (2007). A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell12: 73–86. CASPubMed Google Scholar
Arnoult D . (2007). Mitochondrial fragmentation in apoptosis. Trends Cell Biol17: 6–12. CASPubMed Google Scholar
Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ . (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J22: 4385–4399. CASPubMedPubMed Central Google Scholar
Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D . (2006). Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem281: 22943–22952. CASPubMed Google Scholar
Balsam LB, Kofidis T, Robbins RC . (2005). Caspase-3 inhibition preserves myocardial geometry and long-term function after infarction. J Surg Res124: 194–200. CASPubMed Google Scholar
Berry DL, Baehrecke EH . (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell131: 1137–1148. CASPubMedPubMed Central Google Scholar
Braun JS, Prass K, Dirnagl U, Meisel A, Meisel C . (2007). Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Exp Neurol206: 183–191. CASPubMed Google Scholar
Brown D, Yu BD, Joza N, Benit P, Meneses J, Firpo M et al. (2006). Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci USA103: 9918–9923. CASPubMedPubMed Central Google Scholar
Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P . (2003). Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol4: 387–393. CASPubMed Google Scholar
Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P . (1998). Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94: 727–737. CASPubMed Google Scholar
Chan PH . (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res29: 1943–1949. CASPubMed Google Scholar
Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P . (1999). Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol9: 967–970. CASPubMed Google Scholar
Chauvier D, Ankri S, Charriaut-Marlangue C, Casimir R, Jacotot E . (2007). Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ14: 387–391. CASPubMed Google Scholar
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC . (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol160: 189–200. CASPubMedPubMed Central Google Scholar
Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S et al. (2006). Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J25: 4061–4073. CASPubMedPubMed Central Google Scholar
Chipuk JE, Green DR . (2005). Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol6: 268–275. CASPubMed Google Scholar
Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol18: 157–164. CASPubMedPubMed Central Google Scholar
Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L et al. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell129: 983–997. CASPubMed Google Scholar
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB . (2008). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev18: 54–61. CASPubMedPubMed Central Google Scholar
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell10: 51–64. CASPubMedPubMed Central Google Scholar
Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol4: 313–321. CASPubMedPubMed Central Google Scholar
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol1: 112–119. CASPubMed Google Scholar
Deming PB, Schafer ZT, Tashker JS, Potts MB, Deshmukh M, Kornbluth S . (2004). Bcr-Abl-mediated protection from apoptosis downstream of mitochondrial cytochrome c release. Mol Cell Biol24: 10289–10299. CASPubMedPubMed Central Google Scholar
Denmeade SR, Lin XS, Tombal B, Isaacs JT . (1999). Inhibition of caspase activity does not prevent the signaling phase of apoptosis in prostate cancer cells. Prostate39: 269–279. CASPubMed Google Scholar
Deshmukh M, Du C, Wang X, Johnson Jr EM . (2002). Exogenous smac induces competence and permits caspase activation in sympathetic neurons. J Neurosci22: 8018–8027. CASPubMedPubMed Central Google Scholar
Deshmukh M, Johnson Jr EM . (1998). Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron21: 695–705. CASPubMed Google Scholar
Du C, Fang M, Li Y, Li L, Wang X . (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102: 33–42. CASPubMed Google Scholar
Ekert PG, Read SH, Silke J, Marsden VS, Kaufmann H, Hawkins CJ et al. (2004). Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J Cell Biol165: 835–842. CASPubMedPubMed Central Google Scholar
Ellis HM, Horvitz HR . (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell44: 817–829. CASPubMed Google Scholar
Fraser AG, McCarthy NJ, Evan GI . (1997). drICE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO J16: 6192–6199. CASPubMedPubMed Central Google Scholar
Fujimoto A, Takeuchi H, Taback B, Hsueh EC, Elashoff D, Morton DL et al. (2004). Allelic imbalance of 12q22-23 associated with APAF-1 locus correlates with poor disease outcome in cutaneous melanoma. Cancer Res64: 2245–2250. CASPubMed Google Scholar
Gasser SM, Daum G, Schatz G . (1982). Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. J Biol Chem257: 13034–13041. CASPubMed Google Scholar
Goldstein JC, Kluck RM, Green DR . (2000). A single cell analysis of apoptosis. Ordering the apoptotic phenotype. Ann N Y Acad Sci926: 132–141. CASPubMed Google Scholar
Green DR, Evan GI . (2002). A matter of life and death. Cancer Cell1: 19–30. CASPubMed Google Scholar
Gustafsson AB, Gottlieb RA . (2008). Heart mitochondria: gates of life and death. Cardiovasc Res77: 334–343. CASPubMed Google Scholar
Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell94: 339–352. CASPubMed Google Scholar
Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A et al. (2005). Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell121: 579–591. CASPubMed Google Scholar
Haraguchi M, Torii S, Matsuzawa S, Xie Z, Kitada S, Krajewski S et al. (2000). Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med191: 1709–1720. CASPubMedPubMed Central Google Scholar
Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I et al. (1997). The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene15: 1573–1581. CASPubMed Google Scholar
Hoffarth S, Zitzer A, Wiewrodt R, Hahnel PS, Beyer V, Kreft A et al. (2008). pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell Death Differ15: 161–170. CASPubMed Google Scholar
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol1: 489–495. CASPubMed Google Scholar
Horvitz HR . (2003). Nobel lecture. Worms, life and death. Biosci Rep23: 239–303. CASPubMed Google Scholar
Jaattela M, Tschopp J . (2003). Caspase-independent cell death in T lymphocytes. Nat Immunol4: 416–423. PubMed Google Scholar
Jia L, Srinivasula SM, Liu FT, Newland AC, Fernandes-Alnemri T, Alnemri ES et al. (2001). Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood98: 414–421. CASPubMed Google Scholar
Johnson CE, Huang YY, Parrish AB, Smith MI, Vaughn AE, Zhang Q et al. (2007). Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc Natl Acad Sci USA104: 20820–20825. CASPubMedPubMed Central Google Scholar
Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature425: 721–727. CASPubMed Google Scholar
Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature410: 549–554. CASPubMed Google Scholar
Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S . (1998). Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol143: 1353–1360. CASPubMedPubMed Central Google Scholar
Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P . (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity8: 297–303. CASPubMed Google Scholar
Kerr JF, Wyllie AH, Currie AR . (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer26: 239–257. CASPubMedPubMed Central Google Scholar
Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN et al. (2002). The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature419: 367–374. CASPubMed Google Scholar
Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell94: 325–337. CASPubMed Google Scholar
Lavrik I, Golks A, Krammer PH . (2005). Death receptor signaling. J Cell Sci118: 265–267. CASPubMed Google Scholar
Leo C, Horn LC, Rauscher C, Hentschel B, Richter CE, Schutz A et al. (2007). Lack of apoptotic protease activating factor-1 expression and resistance to hypoxia-induced apoptosis in cervical cancer. Clin Cancer Res13: 1149–1153. CASPubMed Google Scholar
Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ et al. (2000). Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell101: 389–399. CASPubMed Google Scholar
Li LY, Luo X, Wang X . (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature412: 95–99. CASPubMed Google Scholar
Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell6: 1389–1399. CASPubMedPubMed Central Google Scholar
Lorenzo HK, Susin SA, Penninger J, Kroemer G . (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ6: 516–524. CASPubMed Google Scholar
Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC et al. (2007). XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell26: 689–702. CASPubMedPubMed Central Google Scholar
Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S et al. (1999). The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol144: 883–889. CASPubMedPubMed Central Google Scholar
Misaghi S, Korbel GA, Kessler B, Spooner E, Ploegh HL . (2006). z-VAD-fmk inhibits peptide:N-glycanase and may result in ER stress. Cell Death Differ13: 163–165. CASPubMed Google Scholar
Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR . (2006). Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA103: 11573–11578. CASPubMedPubMed Central Google Scholar
Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ et al. (2006). The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development133: 3305–3315. CASPubMed Google Scholar
Ohta T, Kinoshita T, Naito M, Nozaki T, Masutani M, Tsuruo T et al. (1997). Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J Biol Chem272: 23111–23116. CASPubMed Google Scholar
Okuno S, Shimizu S, Ito T, Nomura M, Hamada E, Tsujimoto Y et al. (1998). Bcl-2 prevents caspase-independent cell death. J Biol Chem273: 34272–34277. CASPubMed Google Scholar
Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M . (2003). Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol163: 789–799. CASPubMedPubMed Central Google Scholar
Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN et al. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem280: 20722–20729. CASPubMed Google Scholar
Revillion F, Pawlowski V, Hornez L, Peyrat JP . (2000). Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer36: 1038–1042. CASPubMed Google Scholar
Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N et al. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell117: 773–786. CASPubMed Google Scholar
Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Stefe I et al. (2003). Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ10: 881–888. CASPubMed Google Scholar
Sanchis D, Mayorga M, Ballester M, Comella JX . (2003). Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ10: 977–986. CASPubMed Google Scholar
Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA . (1997). Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity6: 209–215. CASPubMed Google Scholar
Sasaki H, Sheng Y, Kotsuji F, Tsang BK . (2000). Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res60: 5659–5666. CASPubMed Google Scholar
Schafer ZT, Kornbluth S . (2006). The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell10: 549–561. CASPubMed Google Scholar
Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW . (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell1: 289–298. CASPubMed Google Scholar
Scott CL, Schuler M, Marsden VS, Egle A, Pellegrini M, Nesic D et al. (2004). Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. J Cell Biol164: 89–96. CASPubMedPubMed Central Google Scholar
Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW et al. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science284: 156–159. CASPubMed Google Scholar
Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409: 207–211. CASPubMed Google Scholar
Stefanis L . (2005). Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist11: 50–62. CASPubMed Google Scholar
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature397: 441–446. CASPubMed Google Scholar
Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R . (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell8: 613–621. CASPubMed Google Scholar
Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L et al. (2004). XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J5: 489–495. CASPubMed Google Scholar
Taylor RC, Cullen SP, Martin SJ . (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol9: 231–241. CASPubMed Google Scholar
Temkin V, Huang Q, Liu H, Osada H, Pope RM . (2006). Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol26: 2215–2225. CASPubMedPubMed Central Google Scholar
Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N et al. (2004). AIF deficiency compromises oxidative phosphorylation. EMBO J23: 4679–4689. CASPubMedPubMed Central Google Scholar
Vande Walle L, Lamkanfi M, Vandenabeele P . (2008). The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ15: 453–460. CASPubMed Google Scholar
Varkey J, Chen P, Jemmerson R, Abrams JM . (1999). Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol144: 701–710. CASPubMedPubMed Central Google Scholar
Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al. (1998). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med187: 1477–1485. CASPubMedPubMed Central Google Scholar
Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102: 43–53. CASPubMed Google Scholar
Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES et al. (1998). Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ5: 1051–1061. CASPubMed Google Scholar
Wilkinson JC, Cepero E, Boise LH, Duckett CS . (2004). Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol Cell Biol24: 7003–7014. CASPubMedPubMed Central Google Scholar
Wolf BB, Schuler M, Li W, Eggers-Sedlet B, Lee W, Tailor P et al. (2001). Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity. J Biol Chem276: 34244–34251. CASPubMed Google Scholar
Xiang J, Chao DT, Korsmeyer SJ . (1996). BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A93: 14559–14563. CASPubMedPubMed Central Google Scholar
Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K et al. (1999). XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J18: 179–187. CASPubMedPubMed Central Google Scholar
Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R et al. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell94: 739–750. CASPubMed Google Scholar
Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science304: 1500–1502. CASPubMed Google Scholar
Yu L, Strandberg L, Lenardo MJ . (2008). The selectivity of autophagy and its role in cell death and survival. Autophagy4: 567–573. PubMed Google Scholar
Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S et al. (2007). Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell28: 624–637. CASPubMed Google Scholar
Zimmermann KC, Ricci JE, Droin NM, Green DR . (2002). The role of ARK in stress-induced apoptosis in Drosophila cells. J Cell Biol156: 1077–1087. CASPubMedPubMed Central Google Scholar
Zlobec I, Minoo P, Baker K, Haegert D, Khetani K, Tornillo L et al. (2007). Loss of APAF-1 expression is associated with tumour progression and adverse prognosis in colorectal cancer. Eur J Cancer43: 1101–1107. CASPubMed Google Scholar